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ABSTRACT—Various psychological models posit the exis-

tence of two systems that contribute to decision making.

The first system is bottom-up, automatic, intuitive, emo-

tional, and implicit, while the second system is top-down,

controlled, deliberative, and explicit. It has become in-

creasingly evident that this dichotomy is both too simplistic

and too vague. Here we consider insights gained from a

different approach, one that considers the multiple com-

putational demands of the decision-making system in the

context of neural mechanisms specialized to accomplish

some of that system’s more basic functions. The use of

explicit computational models has led to (a) identification

of core trade-offs imposed by a single-system solution to

cognitive problems that are solved by having multiple

neural systems, and (b) novel predictions that can be tested

empirically and that serve to further refine the models.
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You are in a restaurant and are hungry for dinner. The waiter

hands you a menu and you have only a few minutes to choose

what to eat. How does your brain choose among all the possible

options? You could carefully evaluate each menu item and make

a considered decision based on your present hunger level,

dietary concerns, and so on. Alternatively, you could pick

something that you just feel would taste good. These two methods

of deciding—via deliberative processes versus via automatic

processes—have been at the forefront of many models of deci-

sion making. ‘‘Dual system’’ models have been described in

terms of multiple dichotomies, including ‘‘bottom-up’’ (auto-

matic and emotion-driven) versus ‘‘top-down’’ (deliberative and

reason-driven), habitual versus cognitive, fast versus slow, and

implicit versus explicit reasoning (Evans, 2003; Sloman, 1996).

Neuroscientists have put forth several further proposals regard-

ing the brain systems that may support these twin processes—

with, for example, frontal areas underlying the deliberative,

cognitive system, and limbic reward areas supporting automatic

and affective decisions (Sanfey, Loewenstein, McClure, &

Cohen, 2006).

While the dual-process framework is on the surface compel-

ling, it is at best incomplete. Although there is evidence for

some level of regional specialization in the brain, it seems un-

likely that there are two distinct, separable systems that underlie

these dual processes. A further issue is that different researchers

often mean different things when they refer to these systems,

making comparisons across the various dual-system accounts

difficult. Here, we take a different approach and consider in-

sights gained from computational models that attempt to bridge

the gap between neurobiological and psychological processes.

With appropriate caveats (see Conclusion), and by using the

explicit language of mathematics, these models can help

researchers avoid vague terminology and permit them to explore

complex neural-system dynamics, in an attempt to elucidate

their functional roles. Thus, computational models might be

especially fruitful when attempting to delineate the nature of

competitive and collaborative interactions between multiple

systems in decision making.

Here we briefly discuss three different dual-systems accounts

and provide examples of how computational models have

informed the literature.

EMOTIONALVERSUS COGNITIVE

Perhaps the most common dichotomy is that of an emotional

versus a cognitive or deliberative system. The emotional system

is thought to be a primitive, ingrained system that codes for basic

emotions, such as fear, anger, and happiness, that have a strong
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tendency to automatically guide our behavior (e.g., approach or

avoid, fight or flight). Such automatic emotions are often argued

to be driven by the amygdala. There, separate neuronal popu-

lations represent different positive or negative stimulus contexts

associated with primary reinforcements (Gallagher & Schoen-

baum, 1999). For example, a population of amygdala neurons

might become active upon reading about the deluxe hamburger

on the menu, responding to its affective value (even though the

printed words themselves contain no rewarding value). In turn,

amygdala signals can drive automatic approach or avoidance

behaviors via neuromodulatory influences to enhance attention

and interaction with motor-output systems. In contrast, the

prefrontal cortex (PFC) is thought to provide top-down cognitive

control to regulate these emotions. Thus, if you are on a diet, your

intact PFC needs to intervene to adjust the current decision

(choose salad over hamburger) to conform with this larger goal.

Patients who have suffered PFC damage have difficulties

suppressing prepotent behaviors such as those that lead to

immediate rewards at the expense of future rewards (Bechara,

Damasio, Tranel, & Anderson, 1998) or those that used to be

rewarding but are no longer (Fellows & Farah, 2003).

This account might lead one to imagine that the amygdala and

PFC are always in competition, with the amygdala driving be-

havior according to immediate emotional outcomes (eat the large

juicy hamburger) and the PFC driving behavior according to

longer-term goals (choose healthier dishes). But the picture of a

single, emotional, bottom-up, amygdala-based system and an

independent cognitive PFC system is oversimplistic; it is now

clear that these systems are highly interactive and interdepen-

dent (Murray & Izquierdo, 2007). Indeed, ventromedial subre-

gions within the PFC can support affective reactions based

on highly processed cues (Bechara et al., 1998; Murray &

Izquierdo, 2007; Sanfey, Rilling, Aronson, Nystrom, & Cohen,

2003). These subregions depend on the amygdala for affective

input, and while they may suppress affective associations in

some circumstances, they may amplify and elaborate them in

others. Understanding these interdependencies will require

creating a more sophisticated and dynamic model, and compu-

tational modeling can contribute to this aim.

Early computational models focused on the role of the

dorsolateral PFC in maintaining task- and goal-related activity

in an active, working-memory-like state and amplifying the as-

sociated representations in the posterior cortex and subcortical

regions (Miller & Cohen, 2001). The ability of prefrontal neurons

to self-sustain activity in an ‘‘attractor network’’ (a group of

mutually connected cells that support a stable firing pattern) is

thought to be critical for deliberative choice; in the restaurant,

this network would allow you, for instance, to hold preferences in

mind while reading through the rest of the menu. Moreover, this

prefrontal functionality also affords the ability to override pre-

potent bottom-up associations when they do not conform to

current goals, by amplifying representations of alternative

options. Note that this mechanism is not inherently inhibitory;

indeed, it can further amplify salient associations under some

circumstances—for example, allowing you to quickly choose

that molten chocolate cake on the dessert menu (since, after all,

you’ve had only a salad for your main course!).

The Miller and Cohen (2001) model has provided a common

theoretical foundation for interpreting a wide range of findings

related to prefrontal function and dysfunction, and for inspiring

novel experiments. For example, Egner and Hirsch (2005)

presented an elegant neuroimaging study to test and confirm the

model’s prediction that enhanced dorsolateral PFC engagement

supports performance when having to selectively attend to some

stimuli by amplifying the task-relevant representations in the

visual cortex, rather than by inhibiting distracting stimuli.

One criticism of the Miller and Cohen (2001) model is that the

task-relevant representations in the simulated PFC were preset

by the modeler, begging the question of how the PFC ‘‘knows’’

what the task rules are, or which stimuli should be deemed

relevant. However, various successors to that model have ad-

dressed this issue in a more satisfactory way. Newer models show

how the specialized self-sustaining properties of PFC cells,

when interacting with dopaminergic reinforcement signals, can

enable the representation of abstract task-rules to develop nat-

urally as a function of a range of experience across different tasks

(Rougier, Noelle, Braver, Cohen, & O’Reilly, 2005). Other

models demonstrate how interactions among the amygdala,

basal ganglia, and PFC allow the network to learn to only store

information that is relevant to successful task performance in

working memory and to ignore distracting stimuli that (if stored

in memory) would interfere with performance (O’Reilly & Frank,

2006). A central prediction of these models is that the basal

ganglia act as a ‘‘gate’’ determining when and when not to update

PFC working-memory states; this prediction is directly sup-

ported by recent studies (McNab & Klingberg, 2008). Thus these

models provide an integrative framework for interpreting the

functional roles of multiple interacting brain areas, roles that

may not be evident by looking at static anatomical diagrams.

Moreover, they provide several testable predictions regarding

the intersection between motivation and cognition.

AUTOMATIC VERSUS CONTROLLED

Another, related dual-systems account involves an automatic,

intuitive, habit-learning system that competes with a more

flexible, explicit system that evaluates if-then scenarios (Evans,

2003; Sloman, 1996). One way an automatic/intuitive system

can be formulated is in terms of mechanisms that integrate

reinforcement outcomes of actions over multiple experiences.

For example, when deciding between salmon and steak at a

restaurant, one does not explicitly recall each and every expe-

rience with the two foods. Instead, one makes a ‘‘gut level’’

decision supported by a system that has slowly integrated good

and bad representations of action values based on one’s accu-
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mulated life experience. Thus, regular customers might order

‘‘the usual’’ without even thinking twice.

Computational approaches, from the classical (Rescorla &

Wagner, 1972) to more recent reinforcement-learning formula-

tions (Daw, Niv, & Dayan, 2005) to neural networks (Frank &

Claus, 2006), all accomplish this integration by modifying

weights of alternative choices in proportion to ‘‘reward predic-

tion errors’’—that is, discrepancies between expected and

actual outcomes. At the neurobiological level, such prediction

errors are encoded by midbrain dopamine signals, which in turn

modify synaptic plasticity in basal ganglia circuits. With re-

peated experience, each choice converges on a value reflecting

its integrated reinforcement history (Daw et al., 2005), with

separate encoding of positive and negative outcomes thought to

be represented by distinct basal ganglia neuronal populations

(Frank & Claus, 2006). By virtue of being explicit about the

neurobiological and computational components of the system,

computational models facilitated the discovery of specific

genetic contributions to reinforcement-based decision making.

Guided by model mechanisms, researchers found that two genes

controlling distinct aspects of basal ganglia dopamine signaling

are strongly and independently associated with learning from

positive and negative decision outcomes (Frank, Moustafa,

Haughey, Curran, & Hutchison, 2007). Furthermore, computa-

tional analysis revealed that enhanced genetic effects could be

counterintuitively accounted for by lower learning rates—that

is, smaller weight changes from each individual reinforcement

experience—so that decisions between options with subtly

different reinforcement probabilities are not overly sensitive to

the most recent outcomes.

But what if the rules linking choices to outcomes have recently

changed in some critical way (e.g., you have become a vege-

tarian)? In such a case, the ability for the PFC to maintain recent

events in an active state might be recruited to override decisions

that would otherwise be made by the slow-learning habitual

system. Indeed, computational models leveraging the afore-
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Fig. 1. Interacting brain areas that contribute to decision making. Computational models attempt to
elucidate the nature of each area’s subset of computations and how their interactions allow the brain
to solve various trade-offs. Colored projections reflect interacting subsystems associated with
value/motivation (‘‘emotional’’; red), working memory and cognitive control (‘‘deliberative and
controlled’’; green), procedural and habit learning (‘‘automatic’’; blue), and episodic memory and
its influences on behavior (orange). Subregions within the basal ganglia (BG) act as gates to facilitate
or suppress actions represented in frontal cortex. These include parallel circuits linking the BG with
motivational, cognitive, and motor regions within the prefrontal cortex (PFC). Self-projecting
connections within the PFC support active maintenance of working memory (WM). Cognitive goals in
dorsolateral PFC (dlPFC) can influence decision making via projections to the circuit linking
BG with the motor cortex, involved in motor decisions. The hippocampus learns rapid arbitrary,
conjunctive associations, and interacts with the ventral BG. Dopamine (DA) drives incremental
reinforcement learning in all BG regions, supporting adaptive behaviors as a function of experience.
Dotted projections indicate interactions between the PFC and hippocampus in working and long-
term memory that are yet to be modeled. (vmPFC 5 ventromedial PFC; RL 5 reinforcement
learning.)
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mentioned PFC maintenance mechanisms have been applied

to the reinforcement domain, whereby the orbital PFC encodes

working memory for recent outcomes and complements the

intergrated basal ganglia weights (Frank & Claus, 2006).

Supporting this account, a third gene coding for prefrontal

function was found to predict participants’ sensitivity to the most

recent reinforcement experiences without affecting probabilis-

tic choice (Frank et al., 2007). Because the representation of

both long-term probability and recency are relevant to many

decisions, these two interactive and complementary brain sys-

tems may solve a computational trade-off.

Other more abstract models suggest that the PFC represents a

‘‘decision tree’’ of if-then scenarios, allowing a person to develop

an explicit model of the world; that is, given each possible action,

the model PFC represents the predicted next state of the world if

that action were taken, the state after that, and so on (Daw et al.,

2005). This system is compared against a more implicit system

(supported by the basal ganglia) that is ‘‘model free,’’ in that it

simply learns state-reinforcement values without representing a

world model of how each state follows from the next. The ultimate

decision of which system to use at any one time is determined

by the systems’ own computations of the uncertainty of their

respective estimates, with the most certain system gaining

control over behavior (Daw et al., 2005). When the decision tree

is overly complex, the system does not search through all pos-

sible options (potentially because of working-memory limita-

tions); the resulting uncertainty from having to ‘‘prune the tree’’

can cause reversion to the model-free system. Thus, this model

converges with dual-system accounts in suggesting that the ex-

plicit reasoning system is limited by working-memory capacity

(Evans, 2003; Sloman, 1996)—and thus, prefrontal integrity—

but also provides a formal analysis of precisely when one should

rely on one system or the other.

EPISODIC VERSUS ASSOCIATIVE

Any discussion of neural systems supporting explicit processing

must include the hippocampus. Whereas the PFC supports

working memory via persistent neural firing, the hippocampus

supports rapid one-trial learning allowing one to encode distinct

aspects of an event into a coherent long-term memory. Several

computational models simulate the specialized properties of

the hippocampus, coding highly overlapping episodes as nev-

ertheless distinct. A common aspect of these models is the

requirement of hippocampal neurons to encode the conjunctions

of individual features in the environment into a single coherent

representation; the system uses ‘‘sparse coding,’’ whereby only a

small proportion of neurons activate, and only to the combination

of multiple features (McClelland, McNaughton, & O’Reilly,

1995). By identifying unique computational functions of this

system, such models illuminate why the brain may have evolved

multiple memory systems to solve different problems (e.g., where

did you park your car today versus where typically is a good

place to park?).

Returning to our restaurant example, do you order salmon

whenever it is available, or is this choice highly contextualized

(e.g., only at a particular Japanese restaurant on Tuesdays, when

fresh fish is delivered). By most accounts, this contextualized

choice would require having an intact hippocampus. Again, the

best strategy is likely to depend on the particular environmental

context, and it is likely that the brain has found a solution

to determine which strategy is appropriate under different

circumstances. For example, when reinforcement outcomes are

probabilistic, such that rewards are obtained only some of the time

(as in gambling), the same contextual cues present in each expe-

rience do not reliably predict success. In such a scenario, hippo-

campal activity decreases as the probabilities of reward for each

choice are learned, while basal ganglia activity increases (for re-

view, see Poldrack & Packard, 2003). Obviously, it is beneficial if

both of these abilities are sensitive to context but also can integrate

across experience and generalize to related scenarios when nec-

essary. For example, in an unfamiliar restaurant, one cannot rely on

prior specific associations, but one can still choose based on one’s

overall positive experience with salmon across multiple contexts in

the past, as represented in the basal ganglia. Based on computa-

tional principles, it has been hypothesized that reliance on the

hippocampal system in a reinforcement-learning environment will

cause participants to ‘‘memorize’’ the correct choice for specific

stimulus pairs but that, due to competition with the basal ganglia,

this memorization may prevent them from learning the implicit

reinforcement values of individual stimuli (Frank, O’Reilly, &

Curran, 2006). Supporting this idea, disruption of the hippocampal

memory system using drugs produced a dramatic impairment in

explicit-memory recall and impaired the formation of appropriate

responses for particular stimulus conjunctions, but actually en-

hanced participants’ ability to generalize acquired elemental re-

inforcement values to new decisions (Frank et al., 2006). These

collective findings would have been counterintuitive without for-

mal models that led to the specific predictions. They effectively

show that when explicit memory fails, intuition reigns.

CONCLUSIONS

We presented an overview of various dual-systems interpreta-

tions that have been invoked to explain how the brain can choose

among several possible options in the face of uncertainty. These

systems may compete or cooperate in different situations.

Computational models offer a way to formalize the functioning of

and interactions among these systems in a common mathemat-

ical language, which can then be translated back into words.

They generate novel hypotheses and help illuminate the com-

monalities and distinctions between various dual-process

formulations by examining neural computations underlying the

processes, paving the way to replace vague terminology with

functional and mechanistic principles. However, the field is in
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its infancy; there are many more questions than there are models

that even attempt to address them. For example, there has been

almost no modeling work on interactions between the hippo-

campus and the PFC. And even where existing models are at

least partially ‘‘correct,’’ future efforts to amalgamate them into

a unified model will present an enormous challenge. Studying

the ‘‘interactions among interactions’’ is likely to raise several

new issues not apparent by viewing the various models as sums

of their parts.

The modeling approach cannot arbitrate between alternative

accounts of decision making all by itself, and like any method,

it has several potential drawbacks. Modeling can be detrimental

if it overly narrows researchers’ theoretical approaches or con-

strains data analyses. Another pitfall is that it can become too

easy to be enthralled by a particular modeling explanation; just

because a model fits the data does not mean that it is correct.

Thus, like any theory, a model may need to be continually

refined and constrained—and even reformulated—in the face of

new empirical data. However, with these potential warnings,

computational models provide a useful tool to complement the

scientific investigation of the neurobiological underpinnings

of decision making.

Recommended Reading
Daw, N.D., Niv, Y., & Dayan, P. (2005). (See References). Presents an

elegant mathematical formulation that captures properties of a

‘‘model free’’ habitual system and a ‘‘model based’’ explicit system,

and suggests that the degree to which each of these systems is

recruited during decision making depends on their respective

estimations of uncertainty.

Frank, M.J., Moustafa, A.A., Haughey, H., Curran, T., & Hutchison, K.

(2007). (See References). Paper using behavioral and co-

mputational analysis to show that individuals’ proficiency in

different aspects of reinforcement-based decision making is

predicted by specific genes that control component processes of

dopaminergic function in the basal ganglia and prefrontal cortex.

Miller, E.K., & Cohen, J.D. (2001). (See References). A comprehensive,

highly accessible overview of prefrontal cortical function, pre-

senting a simple model that specifies its functional properties and

that inspired the development of many subsequent models relying

on these same properties.

REFERENCES

Bechara, A., Damasio, H., Tranel, D., & Anderson, S.W. (1998). Dis-

sociation of working memory from decision making within the

human prefrontal cortex. Journal of Neuroscience, 18, 428–437.

Daw, N.D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition

between prefrontal and dorsolateral striatal systems for behavioral

control. Nature Neuroscience, 8, 1704–1711.

Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve

conflict through cortical amplification of task-relevant informa-

tion. Nature Neuroscience, 8, 1784–1790.

Evans, J.S.B.T. (2003). In two minds: Dual-process accounts of

reasoning. Trends in the Cognitive Sciences, 7, 454–459.

Fellows, L.K., & Farah, M.J. (2003). Ventromedial frontal cortex

mediates affective shifting in humans: Evidence from a reversal

learning paradigm. Brain, 126, 1830–1837.

Frank, M.J., & Claus, E.D. (2006). Anatomy of a decision: Striato-or-

bitofrontal interactions in reinforcement learning, decision mak-

ing, and reversal. Psychological Reviews, 113, 300–326.

Frank, M.J., Moustafa, A.A., Haughey, H., Curran, T., & Hutchison, K.

(2007). Genetic triple dissociation reveals multiple roles for

dopamine in reinforcement learning. Proceedings of the National
Academy of Sciences, U.S.A., 104, 16311–16316.

Frank, M.J., O’Reilly, R.C., & Curran, T. (2006). When memory fails,

intuition reigns: Midazolam enhances implicit inference in

humans. Psychological Science, 17, 700–707.

Gallagher, M., & Schoenbaum, G. (1999). Functions of the amygdala

and related forebrain areas in attention and cognition. Annals of
the New York Academy of Sciences, 877, 397–411.

McClelland, J.L., McNaughton, B.L., & O’Reilly, R.C. (1995). Why

there are complementary learning systems in the hippocampus

and neocortex: Insights from the successes and failures of

connectionist models of learning and memory. Psychological
Review, 102, 419–457.

McNab, F., & Klingberg, T. (2008). Prefrontal cortex and basal

ganglia control access to working memory. Nature Neuroscience,

11, 103–107.

Miller, E.K., & Cohen, J.D. (2001). An integrative theory of pre-

frontal cortex function. Annual Review of Neuroscience, 24, 167–

202.

Murray, E.A., & Izquierdo, A. (2007). Orbitofrontal cortex and amyg-

dala contributions to affect and action in primates. Annals of the
New York Academy of Sciences, 1121, 273–296.

O’Reilly, R.C., & Frank, M.J. (2006). Making working memory work: A

computational model of learning in the prefrontal cortex and basal

ganglia. Neural Computation, 18, 283–328.

Poldrack, R.A., & Packard, M.G. (2003). Competition among multiple

memory systems: Converging evidence from animal and human

brain studies. Neuropsychologia, 41, 245–251.

Rescorla, R.A., & Wagner, A.R. (1972). A theory of Pavlovian condi-

tioning: Variation in the effectiveness of reinforcement and non-

reinforcement. In A.H. Black & W.F. Prokasy (Eds.), Classical
conditioning II: Theory and research (pp. 64–99). New York:

Appleton-Century-Crofts.

Rougier, N.P., Noelle, D., Braver, T.S., Cohen, J.D., & O’Reilly, R.C.

(2005). Prefrontal cortex and the flexibility of cognitive control:

Rules without symbols. Proceedings of the National Academy of
Sciences, U.S.A., 102, 7338–7343.

Sanfey, A.G., Loewenstein, G., McClure, S.M., & Cohen, J.D. (2006).

Neuroeconomics: cross-currents in research on decision-making.

Trends in the Cognitive Sciences, 10, 108–116.

Sanfey, A.G., Rilling, J.K., Aronson, J.A., Nystrom, L.E., & Cohen, J.D.

(2003). The neural basis of economic decision-making in the

ultimatum game. Science, 300, 1755–1757.

Sloman, S.A. (1996). The empirical case for two systems of reasoning.

Psychological Bulletin, 119, 3–22.

Volume 18—Number 2 77

Michael J. Frank, Michael X. Cohen, and Alan G. Sanfey


