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Computational modeling is an emerging analysis technique with the
potential to offer important insight into how researchers in the cognitive
sciences approach important questions—particularly questions about how
people make choices. However, for those researchers who are interested in
utilizing computational models in their own research, learning the how’s
and why’s of the approach can seem prohibitively difficult. In the current
work, we address these concerns by firstoutlining the basic principles of
computational modeling in plain and accessible language. We then pro-
pose criteria to consider when adopting a computational model to answer
a research question, illustrating that Social Utility Models have many appli-
cations in the field of social cognition and enjoy useful advantages over
conventional analysis approaches. Finally, in a step-by-step tutorial, we
explain how to implement a computational modeling analysis and demon-
strate this approach by using an example data set.
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COMPUTATIONAL MODELS OF DECISION-MAKING

Recently, the study of decision-making has seen an increasing emphasis on the
use of computational modeling to explain and understand choice behavior. When
applied to the study of decision-making, computational models aim to represent
the process of choice arbitration; that is, how people decide between different
options (Konovalov et al., 2018; Vahed et al., 2024). Specifically, computational
models of decision-making aim to represent how choice options are evaluated, with
the effect that they make specific predictions about how people decide. Herein,
computational models of decision-making differ from linear models of decision-
making in the sense that they do not relate independent variables to a dependent
variable. Instead, they relate choices, or dependent variables, to a single decision
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variable, which is then utilized as the criteria upon which an option is chosen, as
Figure 1B illustrates.

Decision-making is the process of choosing between two or more available
options. In the current work, we will focus on the specific process of value-based
decision-making, which involves choosing between options based on personal
preferences. Here, the goal of computational models is to capture how people
choose between different available options; that is, why one choice is subjectively
better than others. Studying preferences in decision-making paradigms can allow
researchers to investigate questions that cannot be reliably answered by self-
report, especially questions pertaining to social cognition. In general, there is a
broad range of questions that computational models of decision-making can be
used to answer, as Table 1 illustrates.

A key advantage of utilizing computational models to study decision-making
is that these models are generative. Generative models are psychological models
that generate predictions by extrapolating from a set of assumptions with formal-
ized logic. There are two classes of generative models. One is as-if models, such
as Cumulative Prospect Theory, which fit parameters on the decisions themselves,
which precludes inferences about the underlying psychological processes that are
being estimated per se. In contrast, the other class constitutes psychological mod-
els, which estimate parameters by model-based derivatives of the behavior, taking
the shape of a latent decision variable. Thus, generative models output predictions
based on formalized hypotheses about the underlying data generation process but
can differ in the nature of the inferences they support. Descriptive models can also
output predictions based on hypotheses (i.e., we can simulate data that reflect a
hypothesis that X affects Y), although these hypotheses are not formalized and,
consequently, do not represent the underlying data generation process. Because
generative models make direct claims about the data generation process, they
bridge the gap between behavior and the underlying psychological processes at
play. As generative models of human psychology, computational models of deci-
sion-making offer great potential for increasing our understanding of a myriad
social cognitive processes.

Despite the considerable upside that computational modeling offers for the field
of social cognition, these models have not yet been widely adopted by researchers in
this field. This is likely due to perceptions that there are prohibitively large barriers
of entry into computational modeling. In the current article, we aim to address these
perceived barriers by illustrating how a computational model can be implemented
and the advantages this approach offers researchers. Specifically, we will focus on
the case of Social Utility Models. Social Utility Models offer the possibility of iden-
tifying the psychological values underlying an individual’s choices, making them a
powerful tool for increasing our understanding of social cognitive behavior.

In general, Utility Models are formal (i.e., algorithmic) models of choice evalua-
tion which assume that people choose the option that maximizes the utility, or sub-
jective satisfaction, that they get from the potential choice outcomes. Social Utility
Models specifically hypothesize that this utility can derived from either adhering
to the norm of self-interest or, alternatively, adhering to one or more norms that
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FIGURE 1. Computational modeling’s differing approach in decision-making. Linear models
are models relating a behavior to a measured or manipulated variable (Figure 1A), while
computational models of decision-making are models of how people evaluate choices against
each other (Figure 1B).

encompass more prosocial motives. The extent to which a choice (i.e., a possible
value of the dependent variable) follows a norm is determined by the context in
which the decision takes place (i.e., the values of the relevant independent vari-
ables and constants). Social Utility Models typically represent the hypothesis that
individuals vary in terms of the utility that they derive from a given norm; these
differences in preferences are represented by free parameters. Thus, one funda-
mental distinction between Social Utility Models and standard Linear Models is
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TABLE 1. Computational Models of Decision-Making

Galvén and Sanfey

Model Type

Use Case

Foundational Model(s)

Examples in Social
Cognition Research

Reinforcement
Learning

Foraging Models

Risky Choice Models

Intertemporal Choice

Motivation Models

Process Models

Social Utility Models

Repeated interactions;
second-order risky choice

Sequential choices; risky
choice

First-order risky choice

Deterministic choice;
outcomes temporally
separated

Deterministic choice; at least

one outcome requires effort

Deterministic choice;
process data available

(i.e., eye-or-mouse-tracking)

Deterministic choice;
outcomes affect other
people

Rescorla-Wagner Model

(Wagner & Rescorla, 1972)

Marginal Value Theorem
(Charnov, 1976)

Optimal Foraging Theory
(Emlen, 1966; MacArthur
& Pianka, 1966)

Cumulative Prospect Theory
(Tversky & Kahneman,
1992)

Hyperbolic discounting
(Breeden, 1979;
Koopmans, 1960)

Demand Model (Hursh,
1993)

Drift-Diffusion Model
(Ratcliff, 1978)

Inequality-Aversion (Bolton

& Ockenfels, 2000; Fehr &

Schmidt, 1999)

Chang et al. (2010)

Turrin et al. (2017)

Nguyen et al. (2016)

Levin (2014)

Lockwood et al. (2017)

Zhang et al. (2024)

van Baar et al. (2019)

Note. First-order risk refers to gambles undertaken with known outcomes and known probabilities. Second-order risk refers
to gambles undertaken with known outcomes but unknown probabilities. Deterministic choice refers to decisions undertaken
with known and certain outcomes.

how they handle individual differences: A priori, Social Utility Models commit to
a precise definition about the exact relationships between independent variables
and dependent variables, but they do not hypothesize about which people will
have which relationships. By contrast, when Linear Models are typically used to
study individual differences, researchers hypothesize about which people will dif-
fer in their relationship between independent and dependent variables, but do not
commit to a specific relationship between independent and dependent variables.

ACTIVETUTORIAL

In this section, we will present a high-level tutorial of Social Utility Modeling tech-
niques in order to provide a practical example of this process. Many of the difficul-
ties that researchers encounter when learning and utilizing this approach come
from a lack of practical guidance about how to implement this programmatically
(Wilson & Collins, 2019). Therefore, in order to supplement this work, we have
developed an online, freely accessible Handbook of Social Utility Modeling (https://
social-utility-modeling.readthedocs.io/en/latest/). This handbook contains a
step-by-step guide on how to implement this modeling approach, as well as four
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tutorials that users can practice using actual data from real experiments (Crock-
ett et al., 2014; Galvan & Sanfey, 2024; Li et al., 2022; van Baar et al., 2019). These
tutorials are available in Python, MatLab, and R to allow for implementation in
whichever language users are most familiar with, and each tutorial is completed
and can be viewed on the Tutorial page (https://epgalvan.github.io/social-utility-
modeling/). The present article was written to develop conceptual understanding
of what to do and why to do it; in concert, the online handbook should develop
competence in independently implementing this approach in order to be applied
to your own research questions.

The first step in Social Utility Modeling is to develop a research question about
how people make value-based decisions that impact other people. Here, we will
follow the example of van Baar et al.’s (2019) article, which sought to answer the
following research question: “What motivates people to reciprocate trust, even
when there are no external incentives to do so?” The research question meets this
demand because it asks about a specific value-based decision (i.e., to reciprocate
trust or not), which impacts both the decision-maker and other people.

To answer this question, we need to identify some plausible answers. First, it is
possible that people do not actually reciprocate at all, preferring to keep the money
for themselves—we can term this strategy “Greed.” Second, it is possible that peo-
ple do reciprocate, and do so because they dislike when they have more money
than their partner, as they likely would if keeping all the money—this strategy
can be called “Inequality-Aversion.” Third, it is possible that people reciprocate
because they would feel guilty for disappointing those who have trusted them.
Trust indicates an expectation that one’s vulnerability will not be exploited, so
people may simply seek to avoid violating others” expectations—we can call this
strategy “Guilt-Aversion.”

Next, a task must be developed where these different explanations make differ-
ing predictions. To examine questions about reciprocity, it is possible to employ
a well-studied experimental task known as the Trust Game (Berg et al., 1995),
which is depicted in Figure 2A. In this game, one player (the Investor) is endowed
with some money and told that they can invest some of it in a second player (the
Trustee). Any amount they invest is multiplied (for instance by a factor of 4) and
transferred to the Trustee, while anything they do not invest is kept by the Inves-
tor as a guaranteed payout. After receiving their money, the Trustee then has the
opportunity to return money to the Investor, but, importantly, need not do so. For
the Investor, the decision to send money is based on the trust they have that their
investment will be repaid by the Trustee, thus making their risky investment pay
off. However, for the Investor, they must simply decide how much of their wind-
fall they want to share with the Investor. Do they reciprocate the Investor’s trans-
fer, or do they keep the money for themselves? The amount that they return to
the Investor is how reciprocity is operationalized in the Trust Game. Here, Greed
varies from Inequality-Aversion and Guilt-Aversion; however, the latter two make
identical predictions because Investors expect Trustees to reciprocate equally.

To create a task where these different psychological preferences produce dis-
tinct patterns of behavior, we can amend the Trust Game such that participants
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are forced to make a choice about being either Inequality-Averse or Guilt-Averse.
To accomplish this, van Baar and colleagues (2019) made the investment multi-
plier either 2, 4, or 6. However, they withheld this information from Investors,
telling them that the multiplier was always 4. This Hidden Multiplier Trust Game
(HMTG) is shown in Figure 2B. Because Investors have a false belief about how
much the Trustee has when the multiplier is either 2 or 6, Inequality-Aversion
and Guilt-Aversion make differing predictions. As Figure 3 demonstrates, for
each of Greed, Inequality-Aversion, and Guilt-Aversion, there is clearly a unique
relationship between the investment and the amount that people are expected to
return.

The next step is to create the Social Utility Model. As mentioned previously,
Social Utility Models represent hypotheses about what people value. Using the
example hypothesis that people only value money, it is quite straightforward to
create a utility equation that embodies the Greed hypothesis. Namely, utility can
be expressed as a linear function of the amount of money received from one’s
payout. For reasons that we will discuss later, we improve this function by normal-
izing to be a number between 0 and 1, where 1 means that you have maximized
your Payout (Equation 1).

Equation 1: Utility,,,. = Greedg,,, = " e
max (My Payout)

The most relevant principle for modeling social utility is decreasing sensitivity
to loss in utility. The loss in utility becomes proportionally smaller as this violation
becomes larger: If Choice A violates the norm twice as bad as Choice B, the loss in
utility is less than twice as bad for Choice A compared to Choice B.

There are four steps in quantifying the utility of following social norms:

1. Define what it means to follow the norm we want to represent in the model
and express this mathematically, such that complete adherence to the norm
results in the norm being equal to 0.

2. Normalize this term to be between 0 and 1 by dividing the expression estab-
lished in Step 1 by its maximum possible absolute value.

3. Invert this ratio by subtracting it from 1: Following the norm now results in
higher utility, meaning that the model predictions align with the hypothesis
that people will choose options that follow our social norm.

4. Apply transformation(s) to our ratio that are consistent with psychological
principles.

In what follows, we apply Steps 14 to explain behavior in van Baar et al.’s (2019)
experiment. By following these instructions, we arrive at a different formulation of
the model compared to the one which appears in the article. Importantly, however,
the models fit the data equally well and are functionally equivalent.

Representing the utility of following social norms, rather than self-interest, is
a slightly more complicated process. To this end, the four steps above outline
how this can be done. We will apply this process to Guilt-Aversion first, which
prescribes giving one’s partners exactly what they expect. As Figure 2 illustrates,
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FIGURE 2. Trust Game. Figure 2A shows the canonical Trust Game first proposed by Berg,
Dickhaut, & McCabe (1995). Figure 2B shows the amendments made by van Baar, Chang, &
Sanfey (2019) to make their Hidden Multiplier Trust Game.

Investors expect Trustees to return half of what they believe the multiplied
investment is, and maximally violating this norm involves returning nothing. To
quantify the violation of this norm, we can subtract this expectation term from
what the Investor actually receives. We then want to normalize this between 0
and 1 by dividing the maximum possible absolute difference between the expec-
tation and what the Investor could receive. So this term will be 0 when investors’
expectations are met and 1 when these expectations are most strongly violated.
Ensuring that all terms in the model are normalized between 0 and 1 is ideal
because it often eliminates the need to recursively search for ideal boundaries
for free parameters (a process described by Wilson & Collins, 2019), as these free
parameters should, consequently, range from 0 to 1 as well. We need these to be
inverted, so we just subtract 1 from the term we have, meaning that a value of 1
means you have fully met expectations and a value of 0 represents you fully vio-
lating expectations. Finally, to incorporate diminishing sensitivity to violating a
partner’s expectations, the Guilt-Aversion term is squared, which is in line with
previous models of Guilt-Aversion (Battigalli & Dufwenberg, 2007; Dufwenberg
& Gneezy, 2000). The model of Guilt-Aversion shown in Equation 2 is the final
outcome of this process.

Equation 2: Utility,,, = Guilt =1- Expectation

Choice

_ 2
(Pun‘ner Payout Partner Payazlfowm)

max (Partner Payouts 0,0)

‘Expectation
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FIGURE 3. Reciprocation amounts prescribed in the HMTG. In the HMTG, Guilt-Aversion and
Inequality-Aversion make differing predictions when the actual multiplier is different from the
believed multiplier, which is always 4.

The four steps in Box 1 can be repeated again for Inequality-Aversion. Perfect
Inequality-Aversion is achieved when the payouts of participants and their part-
ner are equal. The maximum possible violation is when the absolute difference
between the payouts of both you and your partner are the greatest. We then invert
the term by subtracting it from 1. Finally, we apply the square transformation to
capture the decreasing loss in sensitivity as proposed by previous formulations
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of Inequality-Aversion (Bolton & Ockenfels, 2000; Fehr & Schmidt, 1999), which
leads to Equation 3.

Equation 3: Utility,;. = Inequality ;.. =

B 2
_( My Payout My Payout, ., \

Equality
max (|My Payouts — My Payouty, ., \)}

There are now three different Utility Equations that each represent a distinct
hypothesis, namely, that people will follow the same norm when making recipro-
cation decisions. However, these hypotheses are not necessarily wholly exclusive
across multiple trials of the task: People can potentially choose to follow different
norms under different circumstances when making reciprocation decisions. We
can thus usefully create a single model that represents the hypothesis that people
may use all three norms to guide their reciprocity decisions. This can be accom-
plished by following three fundamental steps, listed below, for specifying a mul-
tinorm utility equation:

1. Generate functions that quantitatively represent how well the different choices
(i.e., the values of the dependent variable) adhere to social norms or self-inter-
est, given the factors (i.e., the independent variables) in your experiment.

2. Describe dimensions, or free parameters, where these norms differ from each
other; in other words, answer the question: “What psychological preferences
would lead to a person choosing to follow each norm?”

3. Pair the free parameters with the relevant norm terms by multiplying them
together, then add these interactions together.

The first step is already completed: The functions from Equations 1-3 can be
taken to represent Greed, Guilt-Aversion, and Inequality-Aversion. The output of
each function is plotted in Figure 4, demonstrating that the norms prescribe differ-
ent reciprocation behavior on different trials of the HMTG.

For Step 2, we then want to identify how these functions are conceptually dif-
ferent: Greed is different from Guilt-Aversion and Inequality-Aversion in the
sense that Greed follows from selfishness while the other two prioritize doing the
“right” thing over being selfish: Greed is differentiated from the other two norms
on Dimension 1. Guilt-Aversion and Inequality-Aversion are differentiated by
how they define what is “right,” so this can be considered as Dimension 2. Greek
letters are used to represent free parameters in these models, so Dimension 1 will
be free parameter ® in the model and Dimension 2 will be ®.

Moving to Step 3, free parameters must be assigned to each norm and math-
ematically represented in the utility equation. ® is assigned to Greed, while
the inverse of © is assigned to both Inequality-Aversion and Guilt-Aversion. ®
is assigned to Inequality-Aversion, and the inverse of @ is assigned to Guilt-
Aversion. If we multiply the free parameters with the functions they are paired
to and then add all of these terms together, we arrive at our Social Utility Model
as shown in Equation 4. Including random effects in a linear mixed model
can enable us to capture behavior caused by Greed, Inequality-Aversion, and
Guilt-Aversion. The crucial distinction here is that descriptive models represent
the hypothesis that people differ in the relationship between the independent
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variables and the dependent variable without committing to a constrained set
of predictions (a) about what psychological processes drive these decisions and,
therefore, (b) what these relationships imply about the criteria considered in the
decision-making process.

Equation 4: Utility ., = © x Greed ., + (1 - 0O) x (D x Inequalityg,., + (1 — @) x Guilt,,.)

This approach notably deviates from what has informed many previous imple-
mentations of Social Utility Models. In these previous implementations, a model
is specified per condition, allowing researchers to study how a certain set of prefer-
ences is modulated in certain contextual factors (Crockett et al., 2014; Lockwood
et al., 2017; Stallen et al., 2018). While this approach is certainly the most straight-
forward and the handbook provides guidance on implementing this approach
(https:/ /social-utility-modeling.readthedocs.io/en/latest/3_2_0.html), we argue
for a different approach. This approach sees these modulatory effects integrated
in the model, which we believe is preferable for three primary reasons: The first is
empirical while the second and third are theoretical.

1. Simulations demonstrate that, under certain circumstances, a per condition
model may be incorrectly identified as the correct model over an integrated
model (https:/ /epgalvan.github.io/integration-simulations/).

2. The per condition approach cannot generalize to new contexts, while the inte-
grated model can; van Baar and colleagues (2020) demonstrate this in a follow-
up study.

3. The integrated model represents hypotheses about how and why preferences
change between conditions, while the per condition model simply captures
these changes if preferences change between conditions.

Following the creation of the utility equation, it is necessary to create a set of tri-
als; here, the important information is the number of trials in the experiment and
what those trials will look like to participants. With both a utility equation and a
trial set, it is possible to simulate data. Simulating data is the process of generating
model predictions for a hypothetical set of free parameters. A useful way of view-
ing free parameters is that they are the dimensions on which people can meaning-
fully differ from each other in their tasks. These dimensions alone represent all of
the hypothesized ways that people can behave differently in their experiments.
Therefore, the process of simulating data answers the question, “What would a
person with this specific set of preferences do in my task?”

After model predictions are generated, one crucial step is still needed prior to
model implementation. This extremely important step is to ensure that free parame-
ters can be accurately estimated from the data that created them. Parameter estima-
tion is the process of determining the “best” set of free parameters for the data. For
Social Utility Models, the “best” set of parameters is one that minimizes the differ-
ence between the expected utility and the observed utility. Expected utility refers to
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the utility of choosing the model’s predictions, whereas observed utility refers to the
utility of the observed choice itself. Thus, the free parameter values that minimize
this difference, the “best” set of parameters, is the one that would have generated
the data if the decision-maker maximized utility according to the utility equation, as
the model fundamentally assumes. Parameter recovery is the process of estimating
free parameters from simulated data: By demonstrating that free parameters can be
reliably estimated from the data that created them, researchers can ensure (a) that
their model makes distinct predictions across values of free parameters (i.e., that
these parameters work as intended) and (b) that the optimization algorithm can
reliably find true free parameter values. If parameters cannot be reliably recovered,
adjustments to the model, trial set, or free parameter values are often necessary. For
a list of several common causes for poor parameter recovery and how to fix them,
see the “Fixing Nonspecific Models” dropdown on the “Recovering Free Param-
eters” page, which can be reached by clicking on this text on the left-side panel
(https:/ /social-utility-modeling.readthedocs.io/en/latest/1_6_0.html).

Parameter estimation can be accomplished by using one of two general kinds of
optimization algorithms: global or local. Optimization algorithms take an objective
function and data as an input and functionally try out many different sets of free
parameters to identify the best set. This best set of free parameters is the set that
either minimizes or maximizes the output of the objective function, depending on
the user’s input: In Social Utility Models, the best set of free parameters minimizes
the output of the objective function, which is the difference between expected and
observed utility. Global algorithms sample sets of free parameters across the entire
parameter space, while local algorithms require an initial guess and sample the
parameter space starting from this point. To read more about objective functions
and optimizers, see the “Recovering Free Parameters” page (https://social-utility
-modeling.readthedocs.io/en/latest/1_6_0.html).

In addition, rules can be applied for assigning people to a categorical strategy
group based on their free parameters. Instructions about how to do these steps and
what to consider are available in the handbook on the “Grouping” page (https://
social-utility-modeling.readthedocs.io/en/latest/1_7_0.html).

After it is demonstrated that parameters can be recovered reliably, data collected
from participants can be analyzed. The first step in this process is to estimate free
parameters for each participant. This implementation, where free parameters are
fit to individual participants but not to the population, is akin to running mul-
tiple regressions per participant. Hierarchical structuring mitigates the risk of
overfitting these free parameters (Singmann & Kellen, 2019), so it is necessary
to demonstrate that the estimated free parameters can reliably predict data that
the researchers have not yet seen—a practice known as out-of-sample prediction.
More information about parameter estimation is available in the handbook on the
“Estimating Free Parameters” page (https://social-utility-modeling.readthedocs.
io/en/latest/2_1_0.html).

The most conventional approach to out-of-sample prediction is a process known
as k-fold cross-validation. Herein, the entire data set is split into k number of folds:
For each of these k folds, the data in the fold are withheld and the model is trained
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on the other folds. Then the free parameters estimated from the other folds are
tested on the current fold, which was excluded from the training. In this tutorial,
we cross-validated more than five fold per participant, which is often referred to as
fivefold validation for shorthand. A guide on how to perform k-fold cross-validation
is available in the handbook under the “Validating Parameter Recovery Process”
dropdown on the “Validate the Best Model” page (https:/ /social-utility-modeling
.readthedocs.io/en/latest/2_4_0.html).

With valid and reliable free parameter estimates, it is possible to test hypotheses.
The central approach to hypothesis testing is termed model comparison wherein we
compare models in terms of how well they explain the decisions people make.
Social Utility Models are formalized hypotheses drawn from theories about the
underlying psychological processes involved in making decisions. Consequently,
to test two models that are equivalent apart from one hypothesis is to put that
hypothesized psychological process to the test in the behavioral data: If it leads
to a significant improvement in the ability to explain the choices that people have
made, the inference that follows is that said psychological process is involved in
decision-making.

We test models using metrics called Model Fit Indices (MFls), which quantify
model quality by accounting for both performance and parsimony. Performance is
defined as the model prediction error for the data (i.e., the sum-of-squares between
the model’s predictions and participants” decisions), and parsimony is simply the
number of free parameters employed. Because smaller prediction error and fewer
free parameters are more ideal, lower MFI values indicate a better model. MFIs
can be utilized to statistically test hypotheses because they can be computed per
participant per model. The rationale for conducting statistical tests on MFIs is that,
in doing so, we are comparing each instance of the data generation process (i.e., a
participant) in terms of how well a certain hypothesis (i.e., the single hypothesis
that Model A and Model B do not share) can explain the observed data.

Revisiting the research question and hypotheses specified earlier, we want to
know what motivates reciprocity and we hypothesize that there are potentially
three motives. To test this hypothesis, we compare the MFIs for the model speci-
fied in Equation 4 to simpler derivative models: In other words, we must compare
the three-norm model to all possible two-norm models and all possible one-
norm models. In the Tutorial pages (https://epgalvan.github.io/social-utility-
modeling/), we do this comparison and replicate van Baar et al.’s (2019) findings
that the three-norm model has a significantly higher MFI compared to the deriva-
tive models. In other words, all three reciprocity motives are important for recip-
rocation decisions.

By utilizing Social Utility Models, van Baar and colleagues (2019) were able to
directly answer their research question; namely, by testing the three-norm-model
against simplified derivatives of the model, the authors demonstrate that Greed,
Inequality-Aversion, and Guilt-Aversion each motivate reciprocation decisions.
Only a Social Utility Modeling approach would have facilitated such a direct
testing of this hypothesis. While alternative approaches could have enabled the
researchers to identify and explain the heterogeneity in choices, Social Utility
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Modeling allows for unique conclusions to be drawn about the psychological pro-
cesses underlying the motives in social decisions.

ADVANTAGES AND LIMITATIONS

We see three main advantages of using Social Utility Models to study social cogni-
tive processes. The first of these advantages arises as a function of how individual
differences are handled. In Social Utility Models, models are fit per participant,
therefore the estimated free parameters reflect what individual people value: That
is, individual differences are treated as an important feature of the model. Because
Social Utility Models are generative psychological models, the free parameters
that are estimated can be taken to reflect the psychological distinctions that were
hypothesized a priori. More to the point, these free parameters can function as
individual-level variables that can be used in several different ways.

Second, Social Utility Models enable us to detect the role of multiple different
competing processes in a single behavior. As Figure 3 illustrates, Social Utility
Models incorporate multiple norms and thereby simultaneously predict multiple
relationships between the independent variable and dependent variable of inter-
est. Accommodating multiple relationships is a strength of this approach because
different people often use the same information in different ways—a trend that is
apparent in the example of van Baar et al. (2019).

The third advantage of using Social Utility Models is that it allows for direct
hypothesis testing. Computational models embody hypotheses: They are specific,
committed, formal interpretations about what people will do in a certain situa-
tion. Therefore, when we want to test a hypothesis via a computational modeling
approach, we compare models that differ only in the specific hypothesis we want
to test. Thus, the outcome of hypothesis testing is a direct psychological conclusion
about what the data say. In the example presented in the active tutorial, the out-
come of hypothesis testing was a direct answer to the research question—which
would not have been possible with a different approach.

While there are many constraints that limit the domain of Social Utility Mod-
els” applications, which are discussed throughout the handbook, there is one key
limitation. This limitation is, namely, that it is exceptionally difficult to model the
decision-making process in tasks where participants make decisions that are based
on unforeseen and unpredictable criteria. Of course, adding more terms to a model
is always possible post hoc, but if every person uses different information, adding
a unique term for each participant is not possible. In such situations, Social Utility
Models have very limited usefulness: They are less interpretable and less useful, if
they are even useful at all.

CONCLUDING REMARKS

When applied to the study of social cognitive processes, Social Utility Modeling
offers the potential to evaluate psychological factors that can powerfully shape
differences in social behavior. Even though the use of formal mathematics can be
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daunting, the requisite knowledge to begin learning Social Utility Modeling is actu-
ally quite minimal, and learning this technique is straightforward. Computational
Modeling is a user-driven process, which opens up the opportunity to directly
answer questions about what people value, under what circumstances these values
change, and if people decide broadly similarly or if there are key differences across
individuals. Our contention is that Social Utility Modeling is well suited to answer-
ing these questions and offers advantages over alternative possibilities.

One particular advantage is that it allows us to do model testing in an inte-
grated, multimodal way. Specifically, although we validate the model using
behavioral data, we can validate the model by showing that individual differences
in our laboratory experiment explain individual differences in other kinds of data.
For instance, it is common practice to test these models in the brain by using free
parameters to predict different patterns of neural activation. It is also possible to
demonstrate the ecological validity of your task and your experimental findings
by using free parameters to predict the real-world behavior you want to learn
about in the first place (Galvan & Sanfey, 2024).

Computational models offer tremendous potential for research in social cogni-
tion, although this approach has not, as yet, been widely adopted. Undeniably,
several key factors responsible for this trend are the perceived steep learning curve
and a lack of clarity about what these models aim to do. For the benefit of the field
of social cognition, addressing these issues and lowering the barrier to entry for
computational modeling should remain a priority. The current work is one such
effort, highlighting one specific kind of computational model that social cognition

researchers may find particularly informative.
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