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The computational and neural substrates of moral
strategies in social decision-making
Jeroen M. van Baar1,2, Luke J. Chang 3 & Alan G. Sanfey1,4

Individuals employ different moral principles to guide their social decision-making, thus

expressing a specific ‘moral strategy’. Which computations characterize different moral

strategies, and how might they be instantiated in the brain? Here, we tackle these questions

in the context of decisions about reciprocity using a modified Trust Game. We show that

different participants spontaneously and consistently employ different moral strategies. By

mapping an integrative computational model of reciprocity decisions onto brain activity using

inter-subject representational similarity analysis of fMRI data, we find markedly different

neural substrates for the strategies of ‘guilt aversion’ and ‘inequity aversion’, even under

conditions where the two strategies produce the same choices. We also identify a new

strategy, ‘moral opportunism’, in which participants adaptively switch between guilt and

inequity aversion, with a corresponding switch observed in their neural activation patterns.

These findings provide a valuable view into understanding how different individuals may

utilize different moral principles.
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It is a well-worn moral adage that you should treat others as
you yourself would like to be treated (the “golden rule”).
Heated political debates on issues like immigration and health

care, however, demonstrate that one can easily infuriate others by
treating them according to one’s own moral views. Often, the
underlying theme of such debates is not policy, but rather
the principle by which moral decisions are made.1,2 For example,
should we prioritize the principle of property or of equity, of
solidarity or freedom? In diverse societies, different individuals
may employ different sets of such fundamental priorities, thus
expressing different “moral strategies”. Such a strategy likely
shapes not just political decisions but also behavior in everyday
social interactions. In the present study, we sought to computa-
tionally characterize several distinct moral strategies in the con-
text of reciprocity decisions, and map how these strategies are
instantiated in the human brain.

Multiple moral motives have been proposed to explain reci-
procity behavior, including preferences for consequentialism3, in
which people seek fairness in outcomes (inequity aversion4,5),
and sentimentalism6, in which people are motivated by feelings
such as guilt in order to avoid harming others (guilt aversion7)8.
While previous neuroscientific investigations of these motivations
have identified candidate brain regions involved in their com-
putation, such as the anterior insula (AI), dorsolateral prefrontal
cortex (DLPFC), anterior cingulate cortex (ACC), and ven-
tromedial prefrontal cortex (VMPFC) for inequity aversion9–12,
and AI, VMPFC, DLPFC, supplementary motor area (SMA), and
temporoparietal junction (TPJ) for guilt aversion13,14, several
important questions remain open. First, in most laboratory
paradigms, guilt aversion and inequity aversion yield the same
behavioral predictions, obfuscating which prosocial motivation
was at play in the decision-maker’s mind (as noted by Nihonsugi
et al.14 and Hein et al.15). Therefore, one important outstanding
question is whether these two motivations can be uncoupled
behaviorally. Second, the stability of moral strategies is largely
unknown. Do people behave consistently across different
instances of moral dilemmas or is their decision-making a pro-
duct of the particular context they are facing? Finally, and cru-
cially, previous neuroimaging studies have averaged
measurements across participants, potentially masking individual
differences in implicit moral reasoning, and hence obscuring
strategy-specific features of the moral brain. Can we identify brain
representations involved in processing computations specific to
guilt aversion and inequity aversion? Can these be used in order
to gain deeper insights into the nature of social decision-making?

To address these questions, we designed the Hidden Multiplier
Trust Game (HMTG; Fig. 1), which can elicit behavioral differ-
ences in the decision to reciprocate trust as a function of an
individual’s moral strategy. In addition, we developed a compu-
tational model to identify distinct moral strategies, including
behavioral patterns that reflect a shift in strategy across contexts.
Finally, we sought to identify brain processes associated with
different moral strategies using methods that leverage endogen-
ous variation across participants.

Fifty-seven participants played the HMTG while undergoing
functional magnetic resonance imaging (fMRI). On each trial of
the HMTG, an anonymous Investor can send any number of 10
game tokens to the Trustee (the participant in the scanner),
while retaining the remainder. As in traditional Trust Games16,
the Investor believes his investment will be multiplied by a fixed
factor by the experimenter (here ×4) before being transferred to
the Trustee. However, in the HMTG, only the Trustee knows
that the actual multiplier alternates between ×6 (25% of trials),
×4 (50% of trials), and ×2 (25% of trials). Crucially, the Trustee
is aware of the Investor’s ignorance as to the actual multiplier,
and knows that the Investor believes the multiplier is ×4 on

every trial. Therefore, on 25% of trials (the ×6 multiplier) the
Trustee has more tokens than the Investor believes, and on 25%
of trials (×2) they possess fewer tokens than the Investor thinks.
Following the transfer, the Trustee now can choose to return
any number of tokens from the multiplied investment to the
Investor, but importantly, does not have to do so. The tokens
are redeemed for actual money at the end of the experiment
(see Methods).

Due to the information asymmetry between the two players in
the HMTG, different moral strategies predict different decisions
for the Trustee when the multiplier is ×2 or ×6. A guilt-averse
Trustee, eager to match the Investor’s expectations7, should
always return the number of tokens that were expected based on
the Investor’s belief in a fixed ×4 multiplier, irrespective of the
actual multiplier employed on that trial. An inequity-averse
Trustee, however, keen to ensure an even split4,5, will instead base
his decision on the total number of tokens he receives—which
depends on the actual multiplier used—and ensure an equal
division between the Investor and himself. A third expected
moral strategy is greed, which simply predicts that the Trustee
keeps as many tokens as possible. Importantly, our game also
allows for identification of a fourth, context-based moral strategy,
which we term moral opportunism. Here, we predict a Trustee
would be inequity-averse in the ×2 condition but guilt-averse
in ×6, thus always following a non-greedy moral rule, but one that
is the most financially beneficial at any given time. At first glance,
such an opportunistic strategy would appear peculiar, since it
consistently minimizes neither guilt nor inequity, and indeed
leaves the Trustee with fewer game tokens than a simple greed
strategy. However, the moral opportunism prediction follows
from the notion that some decision-makers might not follow
context-independent moral heuristics, but rather decide flexibly
which course of action in a given situation is both morally jus-
tifiable and maximally financially lucrative.

To more clearly distinguish between these various moral strate-
gies, and to identify potential intermediate strategies, we developed
a computational model to formalize the reciprocity motives of the
second player (the Trustee) in the game. Integrating previous
models of inequity aversion, guilt aversion, and greed, our Moral
Strategy Model posits that the Trustee’s utility results from a trade-
off between financial self-interest (monetary payoff) and social
preferences (Guilt/Inequity), weighted by a greed parameter (Theta;
Θ). We define the Trustee’s payoff π2= (I ×M2–S2)/(I ×M2), where
I is the Investor’s investment amount, M2 is the multiplier known
only to the Trustee, and S2 describes the Trustee’s strategy (i.e., the
amount of money to return in the game). We used previous for-
mulations of inequity aversion, Inequity2= ((I ×M2–S2)/(10–I+
I ×M2)–½)2,4, and a nonlinear version of guilt aversion, Guilt2=
((E2 (E1(S2))–S2)/(E1 (M1) × I))2 7,17, where E2(E1(S2)) refers to the
Trustee’s second-order belief about the Investor’s expectations of
the Trustee’s strategy and E1(M1) refers to the Investor’s belief
about the multiplier (always ×4). To maximize generalizability of
our model, we fixed these second-order expectations across parti-
cipants by setting them to half the amount the Investor believes the
Trustee has (E2(E1(S2))=½× E1(M1) × I). Self-report data con-
firmed that this is an accurate reflection of the Trustees’ average
second-order expectations (see Supplementary Figure 1). On each
trial, the social preference term in the Moral Strategy Model consists
of either guilt aversion or inequity aversion, and by default (at Phi
(Φ)= 0) the model selects whichever of the two motives yields the
smallest loss in utility. As a consequence of this structure, the model
can accommodate the contextual preferences found in moral
opportunism, as it allows the Trustee to ignore guilt in the ×2
condition and ignore inequity in ×6. If Φ deviates from 0, however,
decisions are biased toward moral consistency in the guilt-averse
(Φ < 0) or inequity-averse (Φ > 0) direction. The Trustee thus
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makes decisions that maximize the following utility function:

U2 ¼ Θ � π2 � 1� Θð Þ � min guilt2 þ Φ; inequity2 � Φ
� � ð1Þ

It is important to note that the Moral Strategy Model cannot be
estimated from behavior in a traditional Trust Game, where the
behavioral patterns of guilt aversion, inequity aversion, and moral
opportunism are aligned (see the ×4 condition simulations in
Fig. 2b). Determining a participant’s moral strategy therefore
requires fitting one model to the participant’s behavior across all
conditions of the hidden multiplier task.

Overall, we find evidence that participants vary in their moral
strategies when playing the HMTG. Fitting our Moral Strategy
Model to participant behavior reveals that all four predicted
moral decision strategies are present in our experimental sample.
By linking the representational geometry of the computational
model to the functional MRI data, we find evidence demon-
strating that different moral strategies are associated with distinct
neural activation patterns, even when they yield the same decision
outcome. Moreover, we find evidence for context-dependent
strategies. Morally opportunistic participants adaptively switch
between guilt-averse and inequity-averse behavior, which corre-
sponds to shifts in their brain activation patterns.

Results
Individual variation in decision strategies. The Hidden Multi-
plier Trust Game successfully elicited reciprocity behavior in our
sample, with 56 out of 57 Trustees choosing to return nonzero
amounts to the Investors. However, participants used different
strategies to decide how much money to return (Fig. 2a; see
Supplementary Figure 2 for all participants’ task behavior). All
four hypothesized strategies were represented in our sample
(Fig. 2a). To formally characterize these apparent strategy dif-
ferences, we fit the Moral Strategy (MS) Model to each

participant’s full set of behavioral responses in the Hidden
Multiplier Trust Game. The Moral Strategy Model accurately
described the different hypothesized moral strategies (Fig. 2b;
Supplementary Figure 3), and captured task behavior significantly
better than the unitary models of greed, guilt aversion, and
inequity aversion, as determined by the Akaike Information
Criterion (AIC): ΔAIC with respect to greed model= –229.33,
p < 0.001; ΔAIC w.r.t. guilt aversion= –82.33, p < 0.001; ΔAIC w.
r.t. inequity aversion= –11.24, p= 0.021 (Fig. 2c). These results
match those obtained in a direct behavioral replication of this
experiment (n= 102; see Methods), where model AIC was again
lowest for the moral strategy model: ΔAIC w.r.t. greed= –220.36,
p < 0.001; ΔAIC w.r.t. guilt aversion= –76.04, p < 0.001;
ΔAIC w.r.t. inequity aversion= –13.39, p= 0.010 (Supplemen-
tary Figure 4A). The participants’ model parameters were dis-
tributed throughout the model’s two-dimensional parameter
space (Fig. 2d), confirming the heterogeneity of moral strategies
in our sample and the presence of intermediate strategies. This
heterogeneity highlights the importance of studying inter-
participant variation in moral decision-making, as averaging
neural measurements over these 57 participants would likely
obscure any brain processes specific to a single strategy.

Parameter recovery tests indicated that the parameters of the
model were identifiable (correlation between true and recovered
theta: r= 1.00, p < 0.001; phi: r= 0.93, p < 0.001; see Methods).
To ensure that our model was not overfitting the data, we
performed fivefold cross-validation within each participant’s
dataset to determine the model performance using unbiased
parameter estimates (see Methods). Overall, we observed a high
degree of model accuracy in held-out data (mean squared error
per trial= 5.37, mean r2= 0.86; one-sample t test on r values:
t(55)= 66.1, p < 0.001). These results confirm that our model was
able to strongly predict participant’s trial-level behavior, and
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indicate that participants were internally consistent in their moral
strategy over time (Supplementary Figure 6), which allows us to
infer a participant’s moral strategy even in the ×4 condition of the
Hidden Multiplier Trust Game, where the behavior of inequity
aversion, guilt aversion, and moral opportunism is the same.

Individual variation in brain activity reflects differences in
strategy. Having established that participants exhibit a variety of
reciprocity decision strategies, we next examined how these dif-
ferent strategies might be implemented in the brain.

Standard analytic approaches are not well suited for answering
this question. Ideally, we could map the model predictions
directly onto brain responses at the trial level using a model-based
fMRI approach.18 However, our model requires all of a
participant’s decision behavior (i.e., across the three contexts)
to identify their specific moral strategy, and therefore moral
strategy measurements only exist at the participant level.
Furthermore, standard contrast-based analyses of participant-
level parameter estimates derived from general linear model
(GLM) analyses are unable to provide interpretable inferences
about the brain when participants differ on two separate
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continuous variables (i.e., the model parameters). Therefore, we
instead employed multivariate pattern analysis, which can map
multidimensional psychological states or processes to specific
brain regions19–24. Specifically, the second moment of multi-
voxel brain representations across stimuli can reflect meaningful
differences in how stimuli are psychologically organized, as
demonstrated in representational similarity analysis (RSA)25–27

For example, the psychological organization of moral judgments,
such as harm versus impurity judgments, can be estimated from
multivariate activity patterns in the mentalizing network28.

Here, we extend these analytic advances to a between-subjects
design using inter-subject representational similarity analysis (IS-
RSA; Fig. 3). This method combines two developments in
neuroimaging analysis: the geometric mapping of relationships
between stimulus features, as proposed in RSA26 and the
similarity of computations in a specific brain region across
participants, as proposed in inter-subject connectivity29. IS-RSA

allowed us to map variations in brain processes associated with
HMTG decisions directly onto our Moral Strategy Model,
effectively testing whether multi-voxel activity patterns associated
with reciprocity decision-making are similar for participants who
decide in a similar way (and dissimilar for participants with a
dissimilar decision strategy). To do this, we first created a
geometric representation of the Moral Strategy Model’s para-
meter space by computing the Euclidean distance between all
pairs of participants. We then searched for brain regions that
showed a similar representational geometry to this distance
measure in terms of the multi-voxel activity pattern correlations25

between each pair of participants during the decision screen of
the task. To reduce the search space in the brain while performing
this computation, we used an a priori 200-parcel whole-brain
parcellation based on meta-analytic functional coactivation of the
Neurosynth database30, and we identified parcels that survived
Bonferroni correction (i.e., p < 0.00025). We carried out this
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analysis specifically in the ×4 condition of the HMTG, as here the
predicted behavior in this condition for guilt aversion, inequity
aversion, and moral opportunism is identical, which means that
between-subject comparisons are maximally controlled for
decision output and reward.

We observed significant inter-subject representational similar-
ity effects in 27 brain parcels, including the ventral and dorsal
medial prefrontal cortex (MPFC), dorsal anterior cingulate cortex
(dACC), bilateral anterior insula (bilateral AI), bilateral putamen,
bilateral premotor cortex, bilateral angular gyrus, and left DLPFC
(Fig. 3). These results, which were specific to the decision phase of
the HMTG task (Supplementary Figure 7), indicate that decision-
related activity patterns in these regions were more similar
between participants that share a similar moral strategy for
reciprocity decisions than between participants who differed in
their strategy. The degree of similarity is directly proportional to
the distance between the participants in the model parameter
space. Since predicted choice output in the ×4 condition is
identical between IA, GA, and MO strategies, these regions are
likely involved in the psychological computations that underlie
the various strategies. These results provide converging evidence
with previous studies using mass univariate fMRI analysis
methods (e.g., AI, MPFC, and DLPFC)13,14,31,32, but importantly
our paradigm additionally allows us to evaluate the degree to
which these regions might be selectively processing computations
relevant to a specific moral strategy.

Classifying participants’ strategies based on model parameters.
To test whether any brain region was selectively associated with
inequity aversion, guilt aversion, or moral opportunism, we first
identified the groups of participants who most strongly expressed
these strategies in their reciprocity decisions. To this end, we
divided the parameter space of the model into four moral strategy
zones using a purely model-driven clustering approach. We
simulated Trustee behavior datasets from the model by varying
the two free parameters (theta and phi) within the parameter
bounds, and then used hierarchical clustering to group the
simulations based on similarity, as parameters that yield similar
behavioral predictions should be associated with the same strat-
egy (Fig. 4a, colored zones; see Methods). The strategy clustering
was defined solely from model simulation, without relying on any
experimental data, ensuring that the cluster boundaries are not
biased by the distribution of strategies we observed in our sample
of participants.

Each participant’s dominant moral strategy was then deter-
mined by the position of their model parameters within the
theoretically defined strategy boundaries on the theta–phi plane.
This grouping method yielded 24 inequity-averse (IA), 5 guilt-
averse (GA), 21 morally opportunistic (MO), and 7 greedy (GR)
participants. This distribution of moral strategies in our sample
corresponds strongly to the distribution obtained in a direct
behavioral replication of this experiment (cosine similarity r=
0.96, n= 102; see Supplementary Figure 4B, C). Mean Trustee
behavior of the four groups is visualized in Fig. 4b and
approximates the theoretical predictions of the four moral
strategies (see Supplementary Figure 5 for individual subject
behavior grouped by strategy). Importantly, the four strategy
groups did not differ on age, gender, or tendency to experience
guilt (Supplementary Table 1). Consistency of choices (as indexed
by model error) also did not differ between the groups, and was
approximately equal across the parameter space of the model
(Supplementary Table 1; Supplementary Figure 8). Inequity-
averse participants scored higher than greedy and morally
opportunistic participants on Social Value Orientation (SVO;
see Methods), where higher scores correspond to inequity-averse

preferences and lower scores to greed33. Thus, the behavior of
inequity-averse and greedy participants on the HMTG general-
ized to the SVO task, which lends construct validity to our task,
computational model, and method of grouping participants.
Finally, the three groups with identical predictions in the ×4
condition (IA, GA, and MO) did not differ on actual choice
behavior in this condition (linear mixed-effects regression, main
effect of group on number of tokens returned: F(2,47)= 2.61,
p= 0.084; Supplementary Figure 9) and accordingly did not differ
on number of tokens earned in this condition (one-way analysis
of variance (ANOVA) on sum earned in ×4, effect of group:
F(2,47)= 2.51, p= 0.092).

Decision strategies are associated with distinct brain patterns.
If a brain region is selectively involved in processing a specific
moral strategy, we would expect this region to exhibit a specific
multi-voxel activity pattern exclusively in the participants
employing this moral strategy, i.e., one that is distinct from
participants relying on other decision strategies. This intuition is
operationalized by a measure commonly used to evaluate unsu-
pervised machine-learning models, which we call the “cluster
strength score”34,35 (see Methods). For each participant, this
metric indexes the pattern similarity to other participants who
employ the same moral strategy, relative to the pattern similarity
to all other participants. We used a sign permutation test over a
given strategy group’s cluster strength scores to test whether this
strategy was significantly associated with a brain parcel identified
in IS-RSA. This test implicitly controls for the size of the group.
We limited this analysis to the ×4 condition of the task, and
excluded the greedy subjects, to rule out behavioral differences
between the strategy groups.

We found that the guilt-averse subjects shared a unique activity
pattern in the bilateral anterior insula, bilateral putamen,
DMPFC, and left DLPFC (Fig. 4c). In contrast, inequity-averse
subjects shared an exclusive pattern in bilateral AI, VMPFC,
dACC, supplementary motor area, and bilateral superior occipital
cortex. Moral opportunists shared a common pattern in bilateral
superior parietal cortex and dACC. These findings indicate that
information pertaining to specific moral strategies is encoded in
unique patterns of multi-voxel activity in specific brain regions,
with patterns and regions being consistent across participants
using the same strategy. This is particularly interesting in light of
the fact that all three of these moral strategies involve the
returning of the same amount of money in this ×4 context,
suggesting that these regions are implementing computations
unique to the underlying moral decision strategies.

Consistent brain patterns across conditions. If the activity
patterns observed to be exclusive to guilt aversion, inequity
aversion, and moral opportunism in the ×4 condition indeed
reflect neural computations that are meaningfully related to the
associated decision strategies, we would also expect these activity
patterns to be stable across task conditions. That is, each parti-
cipant’s activity pattern in the ×4 condition should be similar to
the patterns of other participants using that strategy in the ×2
and ×6 conditions, and conversely dissimilar to the ×2/×6 pat-
terns of subjects using any other strategy. To test this, we cal-
culated the degree to which the spatial pattern in the ×4 condition
for a given participant was more similar to other participants
using the same strategy in the ×2 and ×6 condition, as compared
with participants employing other strategies (see Methods). The
results of this analysis (Fig. 4d for generalization to ×2; Fig. 4e for
generalization to ×6) were largely consistent with the ×4 condi-
tion pattern clustering results.
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Since we were specifically interested in finding brain parcels
where activity patterns generalized across both participants and
conditions within a given moral strategy group, we identified
regions where the conjunction was significant across analyses
(Fig. 4f). These converging “strategy maps” indicate that the guilt
aversion strategy involved the ventral surface of the bilateral AI,
bilateral putamen, MPFC, and left DLPFC; inequity aversion
involved bilateral AI, VMPFC, dACC, and bilateral intraparietal
sulcus; and moral opportunism involved bilateral superior
parietal cortex (SPC) and dACC. These regions replicate earlier
findings on the neural correlates of social preferences.9–13 The
insula, putamen, DLPFC, and VMPFC have previously been
associated with guilt aversion13,14, and the SMA and VMPFC
have been found in previous studies examining inequity aversion
(10,11,36,37, among many others). While both these moral
strategies engage the AI via distinct multivariate patterns, guilt
aversion does so more extensively on the ventral surface of this
region. Interestingly, the only regions where moral opportunists
showed consistent and exclusive activity patterns are regions
associated with cognitive control (SPC and dACC38–40), which
may be related to the cognitive resources required to switch
between competing strategies.

Moral opportunists shift brain patterns. If decision-related
activity patterns in the “strategy maps” (Fig. 4f) indeed reflect the
unique psychological computations involved in inequity aversion
(IA) and guilt aversion (GA), then we should be able to predict
participant strategies out of sample based solely on their brain
activity. The morally opportunistic (MO) groups are well suited
for this type of confirmatory analysis, as their behavioral strategy
shifts from IA to GA depending on the trial context. We hypo-
thesized that the MO players should express the GA and IA
patterns most strongly in the conditions where they selectively
use the associated computations in their decision-making, that is,
in the ×2 condition for inequity aversion and the ×6 condition for
guilt aversion.

To test this prediction, we computed the similarity of the moral
opportunists’ activity patterns to the GA–IA pattern difference
map for each parcel and condition (see Methods). A positive
similarity score would indicate that an MO participant was more

similar to GA than IA, and vice versa. Results showed that, across
all parcels, the mean similarity of MO participants to the GA–IA
difference map was indeed significantly greater in the ×6
condition than in ×2 (mean correlation difference Δr= 0.077;
paired-samples t test: t(20)= 4.37, p < 0.001). This confirms our
hypothesis that the morally opportunistic participants expressed
the guilt-averse and inequity-averse activity patterns most
strongly when they used the associated computations in their
decision-making.

To rule out the possibility that this effect was driven by just one
of the two patterns’ being upregulated in the corresponding
condition, we additionally tested the GA–IA pattern similarity in
brain parcels uniquely associated with either guilt aversion or
inequity aversion (i.e., the non-overlapping parcels of the GA and
IA strategy maps from Fig. 4f). Interestingly, we found that MO
activity patterns in IA-specific parcels were more similar to IA
than to GA in ×2 (mean r=−0.071, one-sample t test t(20)=
−4.30, p < 0.001), but not significantly so in ×6 (mean r= 0.034, t
(20)= 1.32, p= 0.20) (Fig. 5). In these parcels, pattern similarity
to the GA–IA difference map was significantly higher in ×6 than
in ×2 (Δr= 0.11, paired-samples t(20)= 4.31, p < 0.001). Con-
versely, MO activity patterns in GA-specific parcels were more
similar to GA than to IA (×2: mean r= 0.25, one-sample t test t
(20)= 8.57, p < 0.001; ×6: mean r= 0.30, t(20)= 12.9, p < 0.001),
and more so in ×6 than in ×2 (Δr= 0.05, paired-samples t test t
(20)= 2.15, p= 0.044). These results confirm that moral
opportunists can express both the GA and IA activity patterns,
alternating between the two, depending on the condition of the
task.

The moral opportunists thus not only used different behavioral
strategies according to the multiplier used; they also differentially
expressed the activity pattern found in the associated moral
strategy group (GA or IA) depending on the task condition.
Moreover, the specific strategy used by a Moral Opportunist in
the ×2 and ×6 contexts could be classified with 90.5% accuracy
using only the relative similarity score to the GA/IA brain
patterns, indicating that 19 out of 21 of Moral Opportunists had a
neural activation pattern that was most similar to GA in the ×6
and to IA in the ×2 context. This provides strong evidence using
an independent sample that the patterns we observed in the
inequity-averse and guilt-averse participants directly reflect the
moral strategy computations carried out in the corresponding
strategy maps, confirming that these patterns capture meaningful
signal related to the underlying psychological process.

Discussion
In this paper, we have presented experimental evidence illus-
trating several distinctive decision strategies when reciprocating
another person’s trust. These variations in moral strategies were
computationally characterized using a utility model that inte-
grates previous formulations of guilt and inequity aversion. By
leveraging the between-participant differences captured in the
two-dimensional parameter space of this model, we mapped the
psychological computations corresponding to guilt and inequity
aversion to specific parts of the human brain.

Importantly, our inferences about moral strategies required the
use of a task in which different social preference models yield
different behavioral predictions (i.e., The Hidden Multiplier Trust
Game). This variant of the canonical Trust Game allowed us to
disentangle neural processes related to different motivational
signals, which would have been conflated in the traditional ver-
sion of the task. Computationally characterizing moral strategies
at the individual level allowed us to draw inferences about
motivational differences even in the task condition where the
behavioral predictions for guilt aversion, inequity aversion, and
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moral opportunism were the same (the ×4 condition). However,
these participant-level inferences required a different analytical
approach from traditional model-based fMRI. A standard
contrast-based GLM analysis is not well suited for examining our
effects of interest, but IS-RSA allowed us to map the complex
geometry of participants in multidimensional model space onto
individual differences in neural signals. By analyzing how parti-
cipants cluster in high-dimensional activity pattern space, we
demonstrated that the psychological computations underlying
guilt aversion and inequity aversion are implemented in different
sets of brain regions. The guilt-averse moral strategy was asso-
ciated with the AI, putamen, MPFC, and left DLPFC. These
findings support the previously proposed idea that computations
in the AI facilitate a guilt response when not living up to the
expectations of another person13,36. Social expectations them-
selves may be computed in Theory of Mind regions, such as
MPFC41,42, where we also found evidence for guilt aversion-
specific computations. In contrast, inequity aversion computa-
tions were mapped onto the AI, VMPFC, and dACC. The AI10

and VMPFC11 have been linked to this social preference before,
while the involvement of the dACC may relate to this region’s
role in monitoring task performance43 and tracking one’s posi-
tion in a social hierarchy44. If the inequity aversion motive
revolves around minimizing payoff differences between self and
other, the medial frontal cortex (including VMPFC and dACC) is
well suited to carry out this computation, due to its role in self-
referential payoff processing11,45,46. Interestingly, the guilt aver-
sion and inequity aversion strategies overlap in AI, but using
distinct multi-voxel patterns of activation.

We also report a new strategy observed in participants, moral
opportunism. This group did not consistently apply one moral
rule to their decisions, but rather appeared to make a motiva-
tional trade-off depending on the particular trial structure. This
opportunistic decision strategy entailed switching between the
behavioral patterns of guilt aversion and inequity aversion, and
allowed participants to maximize their financial payoff while still
always following a moral rule. Although it could have been the
case that these opportunists merely resembled GA and IA in
terms of decision outcome, and not in the underlying psycholo-
gical process, a confirmatory analysis showed that the moral
opportunists did in fact switch between the neural representations
of guilt and inequity aversion, and thus flexibly employed the
respective psychological processes underlying these two, quite
different, social preferences. This further supports our inter-
pretation that the activity patterns directly reflect guilt aversion
and inequity aversion computations, and not a theoretically
peripheral “third factor” shared between GA or IA participants.
Additionally, we found activity patterns specifically linked to
moral opportunism in the superior parietal cortex and dACC,
which are strongly associated with cognitive control and working
memory38–40. We speculate that processes relevant for switching
strategies may have resulted in moral opportunists consistently
recruiting these regions.

This study demonstrates how RSA can be used to measure
between-subject differences in neural function. An advantage of
this method compared with traditional model-based fMRI is that
IS-RSA does not require a strong prior about the algorithmic
implementation of the psychological computation of interest47,48.
Because the inference in IS-RSA is based on inter-subject simi-
larity, it does not require specifying how the computations
are directly encoded by a specific voxel. Encoding models of the
complex computations of social cognition, emotion, and the
prefrontal cortex more broadly have substantially lagged behind
models characterizing how stimulus features are encoded by the
sensory cortex. IS-RSA could therefore be useful to researchers
aiming to map psychological computations onto the brain while

remaining agnostic about the neural algorithm. Here, we
demonstrate that the brain patterns can be used as an inter-
mediate representation of this process, but are not themselves
directly interpretable.

More generally, our approach allowed us to leverage endo-
genous between-participant differences in psychological proces-
sing of the task at hand, while traditional analysis methods would
have required us to average measurements across participants
with potentially vast differences in task interpretation. As such,
our methods open up the possibility of treating participant-level
variation as signal instead of noise, to avoid averaging out key
functional features of the human brain49. In this way, IS-RSA can
also facilitate the use of more ecologically valid experimental
paradigms, by allowing participants to vary in how they interpret
the task.

One major strength of our approach is that participants freely
decided which strategy to employ while making their reciprocity
decisions, in contrast to prior research where participants were
instructed to reason in a particular way (e.g., ref. 15). An obvious
downside of this approach is that we could not control the relative
frequencies of moral strategies in our dataset, which contained a
relatively low number of purely guilt-averse participants. How-
ever, our analytic approach accounted for this in several ways.
First, we defined the participant clustering based purely on the
computational model, which meant the relative prevalence of
various strategies in our sample did not bias the clustering
solution. Second, the inter-subject RSA and brain-space clustering
analyses were based on measurements of pairwise similarity
between pairs of participants, which is effectively using an ordinal
rather than cardinal scaling on a multidimensional space akin to
preference learning. Third, we used within-group permutation
tests to assess the statistical significance of brain activity pattern
clustering, which implicitly controls for differences in group size.
Fourth, we developed several converging lines of evidence—for a
brain parcel to be included in the guilt aversion “strategy map”, it
had to show significant clustering of GA participants in the ×4
condition, as well as significant generalizability of those patterns
to the ×2 and ×6 conditions, which reduces the likelihood of false
positives. Finally, we used an out-of-sample test to demonstrate
that the activity patterns employed by guilt-averse and inequity-
averse participants were functionally linked to behavior using the
moral opportunists. Thus, we believe our results are robust to the
unequal sample sizes of each strategy type. The low prevalence of
pure guilt aversion in our sample may be helpful for improving
psychological game theory50 as it suggests that some guilt-averse
behavior in past research may in fact have been motivated by
inequity aversion, and that guilt-averse preferences may be
context-dependent (e.g., for moral opportunists in our task).

A strength of our analysis is that we grouped participants based
on an a priori clustering of the parameter space of the compu-
tational model. This means that the cluster boundaries in para-
meter space are invariant to any given sampling of participants
from the broader population. Interestingly, our data indicate a
relatively high density of participants around cluster boundaries,
where some participants are closer to a cluster boundary than to
other participants in the same cluster. We do not believe that this
should substantially impact our interpretation of the results. First,
our model simulations indicate (Supplementary Figure 3) that
unit increases in parameter space do not linearly correspond to
changes in predicted behavior. For example, if the theta para-
meter is high, then the behavior produced by large variations in
phi are negligible, while small changes in phi produce large
changes in behavior when theta is low. In addition, there are
multiple combinations of the parameters that can yield very
similar predicted behaviors, and often these parameter combi-
nations are far in parameter space but within a cluster boundary.
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Second, we are primarily interested in connecting the repre-
sentational geometry of this model space to that of brain space.
This means that we are more interested in the relative ordinal
distance between individuals in the two feature spaces than their
absolute cardinal distance in the parameter space units. This is
evaluated in the primary IS-RSA, which is agnostic to the clus-
tering boundaries and uses rank-ordered (Spearman) correlations
to link the two feature spaces. The cluster boundaries merely
provide a heuristic to aid in interpreting the brain findings. We
hope to better understand these nuances of the model as well as
cultural specificity of the moral strategies in future work.

The stability of individual participants’ moral strategies over
trials raises several interesting questions for future work. First,
how stable are moral strategies across tasks? If participants use
the same moral strategy throughout different contexts, tasks, and
time points, this might reflect a trait-like “moral phenotype”
anchored in participants’ enduring social preferences. This
motivational trait might underlie the behavioral phenotypes
previously observed across economic games51,52. However, given
that there are reports of low correspondence between laboratory
and field behavior in the same participants53 (but see ref. 54),
more work is needed to evaluate this possibility. Second, do
decision strategies inferred from behavior correspond to partici-
pants’ subjective experiences? Although there is evidence that
participants are generally unable to accurately report their
internal cognitive processes55, it would be interesting to explore
the subjective reasoning of participants whose strategy lacks
internal consistency (e.g., moral opportunists). Third, what leads
to the development of a mix of moral strategies in a population?
In many human social interactions, moral opportunism may be
the most adaptive strategy, as it allows participants to maximize
payoff while still being able to justify their decision to others—a
key goal of moral reasoning2,56,57. However, there may be psy-
chological or cultural boundary conditions to this strategy that
drive some individuals toward moral consistency.

Taken together with other recent work on between-subject
neural clustering58, our observations suggest that patterns of
brain activity align when people have a similar experience or
interpretation of an event. For example, a visual percept shared
across people is likely to reflect a similar neural representation in
early sensory cortex. Reflecting on the moral debates that divide
our societies today, this remarkable property of the human brain
suggests that our political adversaries are not obtuse, naïve, or
ignorant, as we may be inclined to believe, but rather may be
reasoning about moral dilemmas in a fundamentally different
way.

Methods
Participants. Sixty-six participants were recruited from the Nijmegen student
population through a web-based registration tool. Students of psychology or eco-
nomics were excluded from participation, as they were potentially familiar with
game theory or the Trust Game. All participants were screened for significant
health or neurological problems and had normal or corrected-to-normal vision,
and all gave written informed consent before the start of the experiment. Nine
participants were excluded from the analysis because of excessive head movements
in the MRI scanner, misunderstanding of the task, disbelief in the task, or technical
issues. Fifty-seven participants (mean age= 21.3 ± 2.1 years, 39 women and 18
men) remained. The experiment was approved by the local ethics committee
(CMO Arnhem–Nijmegen, the Netherlands).

Experimental procedures. The experiment consisted of a single session. The
participant was first seated in a behavioral lab space to complete screening and
informed consent forms and to read the task instructions. To avoid biasing game
behavior, the Trust Game was always referred to as “Investment game”, the
Investor as “player A”, and the Trustee as “player B”. The participant was
instructed that he/she would play 80 single-shot trials in the role of player B with
80 anonymous players A, each of whom had previously participated and consented
to have their data used here. Participants were instructed that they would be paid
based on their response to one randomly selected trial at the conclusion of the

experiment, and that this trial would be financially consequential for the Investor
too. The choice behavior of the Investors was drawn from an actual Trust Game
dataset previously collected with the same task parameters (multiplier always ×413),
but the randomly selected trial was only financially consequential for the partici-
pant. To enhance the plausibility of the task, participants were asked to make their
own investment decision as player A to an anonymous player B, and were told that
they would be contacted and paid if their investment decision was used in a similar
future experiment. After the instructions, participants’ photos were taken for
(blurred) use in the possible future Trust Game experiment. While undergoing
fMRI of the brain, participants played 80 trials of the Hidden Multiplier Trust
Game (HMTG).

Task. The Hidden Multiplier Trust Game (HMTG; Fig. 1) is a variant of the
regular Trust Game (also known as Investment Game16) with one important dif-
ference: the multiplier varies between ×2 (25% of trials), ×4 (50%), and ×6 (25%).
Only the Trustee knows the actual multiplier. The Investor believes the multiplier is
always ×4, and the Trustee knows about the Investor’s ignorance. The resulting
information asymmetry allows us to probe the Trustee’s motivations to reciprocate
in the game: guilt aversion predicts that the amounts sent back by the Trustee do
not differ between multiplier conditions, whereas inequity aversion predicts that
Trustees are sensitive to the changing multiplier. Moral opportunism predicts that
Trustees are guilt-averse in ×6 and inequity-averse in ×2. The investments and
multipliers were assigned to the 80 trials such that the distribution of investments
was highly similar between the multiplier conditions (×2, ×4, and ×6; Supple-
mentary Figure 10) and identical across participants. In 4 out of 80 trials (5% of
each multiplier condition), the Investment was 0, so the Trustee could not respond.
These non-informative trials were excluded from computational modeling. The
trials were presented in a different random order to each participant. On the first
screen of each trial, the Trustee was presented with the participant number of the
Investor and a blurred picture of a face to strengthen the Trustee’s social experience
in the task.

Stimulus presentation. The task was divided into two runs of 40 trials each. Each
run lasted around 18 min with 30 additional TRs of fixation at the beginning,
which were used to compute the combining weights for the four echoes in our
multi-echo fMRI sequence. Before the first run, there was a left-handed finger
tapping task and a calibration procedure for eye tracking. Between the runs, the
participant was allowed to take a break for as long as he/she wanted. At the end of
the scanner session, a T1-weighted anatomical scan was made (see “fMRI data
acquisition”). All stimuli were presented using PsychToolBox 3.0.11 (www.
psychtoolbox.org) in MATLAB 2013a (Mathworks, Natick, MA, USA) onto a
screen at the back of the scanner bore, which the participant could view using a
mirror mounted onto the head coil. The participant responded using the leftmost
two buttons on a four-button curved response box (Current Designs, Philadelphia,
PA, USA) in the right hand. These buttons moved the slider on the decision screen
left and right in increments of 1 token or 10% of the slider range (whichever was
greatest, to increase the speed of movement on the slider13). The slider ranged from
0 to [investment × multiplier]. The starting point of the slider was randomly
selected on each trial, ensuring that the number of button presses was orthogonal
to the number of tokens selected.

fMRI data acquisition. Functional magnetic resonance imaging was performed at
the Donders Centre for Cognitive Neuroimaging in Nijmegen, The Netherlands,
using a 3-Tesla head-dedicated MRI system (Skyra; Siemens Medical Systems).
T2*-weighted functional MR images were acquired using a 32-channel head coil
and a multi-echo pulse sequence (224 -mm field of view (FOV); 64 × 64 matrix; 90°
flip angle; 2250 ms repetition time (TR); echo times (TE) 9.4 ms, 20.6 ms, 32 ms,
and 43 ms). Thirty-five ascending slices were acquired (slice thickness 3.0 mm; slice
gap 0.5 mm; voxel size 3.5 × 3.5 × 3.0 mm), covering the whole brain except the
cerebellum. A high-resolution T1-weighted image was acquired using an MPRAGE
sequence (192 sagittal slices; TR 2300 ms, voxel size 1 × 1 × 1mm). To minimize
head movement, soft adhesive tape was placed across the participant’s forehead
immediately before image acquisition started. In accordance with safety regula-
tions, the participant wore earplugs during the experiment and had access to an
alarm button.

Additional measures. After the scanner session, the participants were brought
into the behavioral lab to complete several computerized tasks and paper ques-
tionnaires. First, they were asked to rate, for each HMTG trial in the scanner, how
guilty they felt about the number of tokens they had returned to the Investor, and
how guilty they would have felt if they had returned a randomly selected alternative
number of tokens. Ratings between 1 and 7 were measured on a continuous,
computer mouse-controlled slider. Next, the participants completed a ques-
tionnaire on their beliefs about the Investor’s expectations at each possible
investment in the HMTG. We used these self-reported second-order expectations
to check that the model we used as a proxy for second-order expectations in our
model (on each trial: 2 × investment) was accurate (see Supplementary Figure 1).

The participant also completed computerized versions of the Social Value
Orientation (SVO) task (slider version, incentivized; adapted from59), and the Guilt
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Inventory, which measures an individual’s propensity to guilty feelings in three
categories (trait guilt, state guilt, and moral standards; see ref. 60). Finally, the
participant completed a demographics questionnaire on paper and answered
several reflective questions about the experiment. One of these questions was “Do
you think that the participants with whom you played in Task 1 will be happy if the
round you played with them is selected for payment?” We used the participant’s
answer on this question to test (dis)belief in the financial consequentiality of the
task for the Investors. Two participants were excluded from the analysis based on
this question.

Participant payment. Several days after the experiment, one of the 80 HMTG
rounds was randomly selected for the payment. The participant received the
number of tokens earned (Investment × multiplier–Amount returned) in this
round, converted to euro using an exchange rate of €0.40 per token. This amount
was added to the earnings from the incentivized SVO task and a €29 base fee. An
administrator not involved in the study electronically transferred the total amount
to the participant several weeks after the experiment. The participants had been
informed about the payment procedures at the start of the experiment.

Behavioral data analysis. Behavioral analyses were carried out in Python version
2.7.15 (Python Software Foundation), using the Scipy package version 1.1.0, unless
noted otherwise below.

Computational modeling. The Moral Strategy (MS) Model (Eq. 1) was fit to each
participant’s behavioral data by varying the free parameters (theta and phi) within
the parameter bounds (0 ≤Θ ≤ 0.5 and –0.1 ≤Φ ≤ 0.1), and minimizing the sum of
squared error between the model’s behavioral prediction and actual behavior over
the 76 trials with nonzero investment, using the least_squares routine in Scipy. To
avoid ending the fitting procedure in a local minimum, the model fitting algorithm
was initialized at 10,000 random points in theta–phi parameter space for each
participant. In case of a tie in model fit between two or more iterations of the fitting
procedure, the first occurrence of the best model fit was selected as a winning
model.

We compared the predictive accuracy of our model to that of its component
models, including greed (Eq. 2), inequity aversion (Eq. 3)4, and guilt aversion
(Eq. 4)7. In each of the following formulations, U2 refers to the Trustee’s utility, and
π2 is the Trustee’s payoff, defined as π2= I ×M2–S2. I is the Investor’s investment
amount, M2 is the multiplier known only to the Trustee, S2 describes the Trustee’s
strategy (i.e., the amount of money to return in the game), E2E1(S2) refers to the
Trustee’s second-order belief about the Investor’s expectations of the Trustee’s
strategy, and E1(M1) refers to the Investor’s belief about the multiplier (always x4).
Theta (Θ) is a greed parameter that weights social preference (inequity in Eq. 3 and
guilt in Eq. 4) relative to financial self-interest (payoff).

U2 ¼ π2 ð2Þ

U2 ¼ π2 � Θ � π2= 10� I þ I �M2ð Þ � 1=2ð Þ2 ð3Þ

U2 ¼ π2 � Θ � E2 E1 S2ð Þð Þ � S2ð Þ = E1 M1ð Þ � Ið Þð Þ2 ð4Þ
In the guilt aversion model and the MS model, the second-order expectation
(E2E1(S2)) is set to half the amount the Investor believes the Trustee has
(E2(E1(S2))=½ × E1(M1) × I). This is a deviation from prior work13, where
participants’ individual second-order beliefs entered into a computational model.
However, fixing second-order expectations across participants has the advantage of
(a) improving generalizability of the model to new populations which may not have
measured second-order beliefs, (b) being consistent with the model simulations in
the clustering analysis, where we do not model individual variability in beliefs, and
(c) any observed differences in model fit can be explicitly attributed to differences
in sensitivity to those beliefs (i.e., guilt aversion) rather than differences in the
beliefs themselves. Self-report data confirmed that the expectation model
(E2(E1(S2))=½ × E1(M1) × I) is an accurate representation of the Trustees’ average
second-order expectations (see Supplementary Figure 1). Furthermore,
Supplementary Figure 11 demonstrates that while using fixed second-order
expectations across participants leads to a slight numerical improvement in mean
model fit compared with a model with individual second-order expectations, this
improvement is not statistically significant across participants.

Across all models, the predicted strategy for the Trustee was the strategy which
yielded maximal utility:

Ŝ2 ¼ argmax
S2

U2ðS2Þ ð5Þ

Model performance was measured and compared using the AIC (Eq. 6)61,62, which
rewards model fit and penalizes model complexity (number of free parameters).
We chose to use AIC over the alternative Bayesian information criterion, since AIC
is superior to BIC if the true data-generating model is not in the model set63, which
is likely true for the current experiment. Assuming that the model errors are
normally distributed, AIC is defined as

AIC ¼n � ln SSE=nð Þþk � 2 ð6Þ

where SSE represents the residual sum of squares (i.e., the sum over squared
differences between model prediction and actual behavior), n represents the
number of observations (trials), and k represents the number of free parameters in
the model (theta and/or phi). We computed AIC per subject, and used one-sample
t tests on the subject-wise AIC differences between two models for model
comparison64. Participants whose behavior was perfectly explained by any model
were excluded from model comparisons, since the logarithm of 0 is undefined. We
found that average model fit for the Moral Strategy Model was better than all three
competing models (Fig. 2c). Two examples of the utility curve described by the
Moral Strategy Model in an experimental trial are presented in Supplementary
Figure 12.

To ensure that our model was not overfitting the data, and to estimate the
stability of decisions within subjects over time, we performed cross-validation on
the model predictions. For this step, we divided the 76 trials with nonzero
investment for each participant into five equal parts (fivefold cross-validation). For
each fold, we fit the model to the remaining 4/5 of the data, and predicted the
behavior in the held-out 1/5. We compared the model predictions to the true held-
out data across all folds by computing the mean squared prediction error per trial,
the Pearson correlation coefficient r, and r2. We tested prediction quality with a t
test on the r values against 0. In this test, we excluded one participant for whom
both the model predictions and the actual behavior were always to return 0 tokens,
which caused the correlation to be unidentifiable. Overall, we observed a high
degree of model accuracy (mean squared error per trial= 5.37, mean r2= 0.86;
one-sample t test on r values: t(55)= 66.1, p < 0.001).

We ran parameter recovery analyses to ensure that our model was robustly
identifiable. To this end, we created 57 simulated subjects by simulating task data at
57 random points in the theta–phi parameter space, and fit our model to these fake
subjects (1000 iterations of the fitting algorithm per simulated subject, best fit
selected). The correspondence between the true and recovered parameters was very
high (correlation between true and recovered theta: r= 1.00, p < 0.001; phi: r=
0.93, p < 0.001). We additionally tested the correspondence by the true simulated
task data and the task data predicted based on the recovered parameters;
correspondence here was very high as well (mean over 57 fake subjects: mean r=
1.00, one-sample t test on r values against zero: t(55)= 10889.27, p < 0.001).

Clustering participants by moral strategy. We aimed to cluster our participants
into moral strategy groups without being biased by the particular distribution of
moral strategies in our sample. To this end, we first applied hierarchical clustering
to simulations of our Moral Strategy Model, and then grouped our participants’
behavior by the cluster boundaries obtained from the simulations. Specifically, we
created 10,201 (101 × 101) simulated Trustee behavior sets at evenly spaced points
in the model’s parameter space, with theta ranging from 0 to 0.5 and phi from −0.1
to 0.1, for each combination of investment (0 to 10) and multiplier (2, 4, and 6).
We computed the pairwise squared Euclidean distances between these simulations
and used the hierarchical clustering algorithm from the Scipy package in Python to
group the simulations into four parsimonious clusters. Qualitatively, the simula-
tions in these clusters aligned with the theoretical predictions of the four moral
strategies we aimed to capture (see Fig. 2b). Finally, we assigned each participant to
the cluster of the simulation to which that participant was nearest in parameter
space (based on Euclidean distance), thus creating four moral strategy groups.

The result of this approach is a clustering of participants that is not determined
by their prevalence in our dataset, or even by their apparent grouping in the model
parameter space, but purely based on the theoretical boundaries in the model
space. For example, even if our sample had contained no guilt-averse (GA)
participants, we would still have identified this strategy in the model simulations,
without placing any participants in the corresponding section of the theta–phi
parameter space. If, in this case, we had instead used a k-means clustering
algorithm set to find four participant clusters, this algorithm would have divided
the three participant groups (IA, MO, and GR) into four, thus leading to erroneous
clustering of the participants’ moral strategies. To display the result of our
simulation-based clustering method, and allow readers to judge its reliability, we
have plotted all participants’ task behavior, grouped by moral strategy, in
Supplementary Figure 5A–D.

Behavioral differences between strategy groups. There were no significant
differences between the groups in gender (chi-square(3)= 2.05, p= 0.56) or age (F
(3,53)= 1.65, p= 0.19). There were also no differences in consistency of choices, as
measured by the mean squared model prediction error per trial per participant (F
(3,53)= 0.68, p= 0.57). The Guilt Inventory scores (split by state guilt, trait guilt,
and moral standards) were also not different between the groups (state guilt: F
(3,53)= 0.37, p= 0.77; moral standards: F(3,53)= 0.98, p= 0.41; trait guilt: F
(3,53)= 1.23, p= 0.31). The only metric that was different between the four groups
was Social Value Orientation (overall effect of group on SVO angle: F(3,53)= 5.84,
p= 0.0016). Post-hoc pairwise comparisons showed that inequity-averse partici-
pants had a significantly higher SVO angle (meaning stronger prosocial orienta-
tion) than GR and MO participants (IA-GR: t(29)= 4.45, p < 0.001; IA-MO: t(43)
= 3.43, p= 0.0014); no other pairwise comparisons were significant. This implies
that the strategy employed by the inequity-averse participants in our task corre-
sponds to the strategy they employ in the social value orientation task, where
higher scores indeed correspond to inequity-averse preferences and lower scores
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correspond to greedy preferences33. Thus, the behavior of inequity-averse and
greedy participants on the HMTG generalizes to the SVO task, which lends con-
struct validity to our task, computational model, and method of clustering parti-
cipants. Neither guilt aversion nor moral opportunism is explicitly indexed by
social value orientation.

The three groups with identical predictions in the ×4 condition (IA, GA, and
MO) did not differ on actual choice behavior in this condition. We tested this using
linear mixed-effects regression using the lme4 version 1.1–18–1 and lmerTest
version 3.0–1 packages in R version 3.5.1 (regression model formula:
Amount_Returned ~ Investment+Group+ (1+ Investment | Subject)). There
was no main effect of group on number of tokens returned: F(2,47)= 2.61, p=
0.084; Supplementary Figure 9). Accordingly, these three groups also did not differ
on number of tokens earned in the ×4 condition (one-way analysis of variance
(ANOVA) on sum earned in ×4, effect of group: F(2,47)= 2.51, p= 0.092).

Replication study. We conducted a direct replication of this imaging study in a
separate behavioral experiment (n= 102). This replication sample was part of a
larger follow-up study on the Hidden Multiplier Trust Game, which will be
described elsewhere. Participants played 80 rounds of the HMTG in the role of
Trustee, with a different anonymous Investor each time. The experimental design
was identical to the experiment as described in the current paper, with three
notable exceptions: (1) the participant was seated in a private behavioral lab space,
instead of lying in an MRI scanner; (2) the participant responded to Investor
investments using a button-controlled slider that moved in steps of 1 token, instead
of in 10% increments (as in the scanner study); (3) the participant played two
blocks of 80 trials of this task: one block with multipliers ×2, ×4, and ×6 (as in the
imaging study), and one with multipliers ×4, ×6, and ×8 (Investor believes in ×6
multiplier). For the replication analyses in the current paper (Supplementary
Figure 4), only the data from the direct replication block (i.e., ×2, ×4, ×6) were
used. Block order was counterbalanced across subjects.

fMRI preprocessing. Prior to preprocessing, the four read-outs acquired per TR in
the multi-echo procedure were realigned and combined per run, using the echo
weighting estimated from the first 30 TRs acquired at the start of the run65. Motion
parameters obtained during realignment were stored and added to the GLM
analysis as nuisance regressors. Next, fMRI data preprocessing was carried out
using SPM12 (Statistical Parametric Mapping; Wellcome Trust Centre for Neu-
roimaging, London, UK) in MATLAB version 2014a. Preprocessing of the func-
tional images consisted of slice time correction to the middle slice, coregistration to
the T1-weighted anatomical scan, normalization to MNI space (Montreal Neuro-
logical Institute) using the deformation fields obtained by segmenting the anato-
mical scan, and smoothing with a Gaussian kernel of 8-mm full width at half
maximum.

fMRI GLM analysis. We performed temporal data reduction using a standard first
level GLM approach. A GLM was constructed for each participant using boxcar
regressors for each task condition. All four screens of the task were taken as
conditions, with the trials in the decision and response screens split by multiplier
level. A parametric modulator for investment size was added during the investment
screen. The two runs were modeled by separate regressors in the same GLM. We
thus estimated a GLM for each participant with the following regressors per run:

1. Investor identity screen
2. Investment screen
3. Parametric modulator: investment size
4. Decision screen ×2
5. Decision screen ×4
6. Decision screen ×6
7. Response screen ×2
8. Response screen ×4
9. Response screen ×6
10–15. Realignment parameters
To account for residual variance, the temporal derivative of each condition

regressor was added to the model as well as a constant regressor for each entire run.
The resulting GLM was convolved with SPM’s canonical hemodynamic response
function. The model was corrected for temporal autocorrelations using a first-order
autoregressive model and a standard high-pass filter (cutoff at 128 s) was used to
exclude low-frequency drifts. The Decision screen parameter estimates obtained
from the first level GLM were used in all subsequent analyses.

Inter-subject representational similarity analysis (IS-RSA). The inter-subject
representational similarity analysis was carried out in Python 2.7.12 using the
NLTools package version 0.3.6 (http://github.com/ljchang/nltools). We first
obtained each participant’s mean “Decision screen ×4” activity map by averaging
over the corresponding GLM beta maps for the two runs. We then divided these
subject-level beta maps into 200 parcels using a whole-brain parcellation based on
meta-analytic functional coactivation of the Neurosynth database30 (parcellation
available at http://neurovault.org/images/39711/ and displayed in Supplementary
Figure 13). The use of a parcellation scheme has several advantages over the more
conventional searchlight approach. First, it is several orders of magnitude less

computationally expensive. Second, the parcels are non-overlapping and contain
bilateral regions that reflect functional neuroanatomy, whereas a searchlight
approach is limited to local spheres that do not adapt to different areas of the
cortex.

Next, we created a dissimilarity matrix for each parcel (the “parcel dissimilarity
matrices”) using pairwise correlation dissimilarity between each pair of
participants. Correlation distance is a useful metric that can accommodate data
that is on different scales, which is important when comparing different
participants’ beta maps. We also created a dissimilarity matrix using the Euclidean
distance between each pair of participants in the Moral Strategy Model’s parameter
space. This “model dissimilarity matrix” captured the dissimilarity between
participants in their motivations for reciprocity (moral strategy).

We then computed the correlation between each parcel dissimilarity matrix and
the model dissimilarity matrix using Spearman’s rank-order correlations on the
lower triangle of the matrices. To obtain significance levels of the resulting
Spearman’s rhos, we computed the same statistic after shuffling the order of the
observations in one of the two matrices 10,000 times, and calculated the proportion
of instances in which the permuted rho exceeded the true rho. These Monte Carlo
p-values were Bonferroni-corrected by multiplying them by the number of parcels
(200). All p-values that remained below 0.05 after this correction were taken to
indicate a significant association between model distance and parcel representation
distance, and thus a significant relationship between moral strategy and
multivariate brain activity patterns in a given parcel.

It is important to note that in this analysis we are not directly comparing brain
responses between two groups, and we are not assuming a linear relationship
between an individual difference variable and intensity in a single voxel. Such
traditional analyses assume Gaussian error and require a large number of
participants to generate adequate statistical power to confidently determine that the
effect described by the first moment of the distribution is significant given the
variance. Instead, we are examining the second moment of a multivariate
distribution. This type of analysis is invariant to mean differences in individual
activity and explicitly focuses on covariance between participants (see ref. 66).
There are no standard methods to calculate power for this type of analysis, but we
are calculating similarity across 1596 pairwise observations (57 × 56/2) for these
analyses, as compared with 57 subject-wise observations in a standard analysis.
This analysis also allows us to examine the similarities between groups, as opposed
to solely examining average differences between groups as per a standard univariate
approach.

Cluster strength analysis. To evaluate the degree to which a given moral strategy
exhibited a unique brain representation, we calculated the cluster strength metric.
This metric (Eq. 7) is similar to cluster validity metrics used in unsupervised
machine-learning applications34 and is a normalized metric between [−1,1] that is
calculated by subtracting the mean representational dissimilarity (1–correlation) of
that participant to the other participants in the same moral strategy group
(“within”) from the mean dissimilarity to all participants in the other groups
(“between”) and normalizing by the greatest of the two:

cluster strength ¼ between�within

max between;within
� � ð7Þ

Positive cluster strength values indicate that the participant clusters together with
others of the same moral strategy in the parcel’s n dimensional representational
space (n= number of voxels in the parcel) and away from other moral strategies.

To provide an intuition for the cluster strength score, we visualized our
approach in Supplementary Figure 14 using a reduced dimensional space. In the
middle panel of this figure, we plotted a two-dimensional simplification of the left
DLPFC’s 745-dimensional space (745 voxels; ×4 condition) based on a
multidimensional scaling (MDS) dimensionality reduction of activity patterns in
this region. The MDS algorithm was applied using the Hypertools package version
0.4.2 for Python after z-scoring the patterns within each participant. The 2d
projection shows that guilt-averse participants cluster together in the left DLPFC
compared to the other participants. Therefore, guilt-averse participants have
activity patterns that are more similar to one another than to the participants in the
other moral strategy groups. The right panel summarizes this relationship in the
form of the cluster strength score, with participants grouped by moral strategy and
rank-ordered within each group, as is customary for silhouette plots35.

We tested whether a brain region was significantly associated with a given
moral strategy by permuting the sign of the cluster strength scores for all
participants in this strategy group, and then evaluating whether this group’s
average cluster strength was statistically distinguishable from zero (i.e., meaningful
clustering). In this step, we permuted the sign of the observed cluster strength
scores within a moral strategy group 5000 times and compared the actual mean
cluster strength in the moral strategy group to the distribution of the permuted
scores. The Monte Carlo p-value was the proportion of permuted scores exceeding
the actual score. Although this metric accounts for differences in sample sizes for
each moral strategy, it is important to note that smaller groups have less power.

To test whether strategy-specific activity patterns in ×4 condition generalize
to ×2 and ×6, we again used the cluster strength score, but now measured across
conditions. For example, we tested whether an IA participant’s activity pattern in
the ×4 condition was more similar to other IA participants’ ×2 patterns than to
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non-IA participants’ ×2 patterns. We again tested the association between a
strategy and a brain parcel by permuting the sign of the cluster strength scores of
that strategy group in that parcel. The conjunction with the within-×4 clustering
test yields the “strategy maps” (Fig. 4f), which highlight regions where strategy
groups clustered in ×4, and where the associated activity patterns generalized to ×2
and ×6.

Similarity analysis of Moral Opportunists to GA and IA. To determine whether
the Moral Opportunists flexibly expressed the multi-voxel activity patterns that we
found in the guilt-averse and inequity-averse participants, we computed the
similarity of MO participants’ activity patterns to the GA–IA pattern difference
map in each parcel and each condition. We created these GA–IA difference maps
in the following way. We first extracted each GA and IA participant’s mean
decision screen beta maps for the two conditions from the GLM results, and
standardized (z-scored) them per participant, per condition, and per parcel. We
then averaged the z-scored maps per group (GA/IA), condition (×2/×6), and
parcel, and computed the differences between the two groups’ mean z-maps. This
yielded, for each parcel and condition, a GA–IA pattern difference map with
positive values for voxels that were commonly active in guilt-averse participants
relative to inequity-averse participants, and negative values for the reverse. We next
calculated the spatial similarity (Pearson correlation) of the MO activity patterns
for each condition (i.e., ×2 or ×6) in each parcel to the corresponding GA–IA
pattern difference maps.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data and code availability
All data and custom code required to reproduce the results in this paper are available
from the Donders Institute for Brain, Cognition, and Behavior repository at: http://hdl.
handle.net/11633/aabwlrrn. The analysis code can additionally be found at https://github.
com/jeroenvanbaar/MoralStrategiesFMRI.

Received: 14 November 2018 Accepted: 20 February 2019

References
1. Greene, J. D. Moral Tribes: Emotion, Reason, and the Gap between us and

Them. (London: Penguin Press, 2013).
2. Haidt, J. The emotional dog and its rational tail: a social intuitionist approach

to moral judgment. Psychol. Rev. 108, 814–834 (2001).
3. Mill, J. S. Utilitarianism. (London: Parker, Son, and Bourn, West Strand,

1863).
4. Bolton, G. & Ockenfels, A. ERC: a theory of equity, reciprocity, and

competition. Am. Econ. Rev. 90, 166–193 (2000).
5. Fehr, E. & Schmidt, K. A theory of fairness, competition, and cooperation. Q.

J. Econ. 114, 817–868 (1999).
6. Smith, A. The Theory of Moral Sentiments. (London: Millar, Strand, 1759).
7. Battigalli, P. & Dufwenberg, M. Guilt in games. Am. Econ. Rev. 97, 170–176

(2007).
8. Yu, H., Shen, B., Yin, Y., Blue, P. R. & Chang, L. J. Dissociating guilt- and

inequity-aversion in cooperation and norm compliance. J. Neurosci. 35,
8973–8975 (2015).

9. Haruno, M. & Frith, C. D. Activity in the amygdala elicited by unfair divisions
predicts social value orientation. Nat. Neurosci. 13, 160–161 (2010).

10. Sanfey, A. G., Rilling, J. K., Aronson, J. A., Nystrom, L. E. & Cohen, J. D. The
neural basis of economic decision-making in the Ultimatum Game. Science
300, 1755–1758 (2003).

11. Tricomi, E., Rangel, A., Camerer, C. F. & O’Doherty, J. P. Neural evidence for
inequality-averse social preferences. Nature 463, 1089–1091 (2010).

12. Hsu, M., Anen, C. & Quartz, S. R. The right and the good: distributive justice
and neural encoding of equity and efficiency. Science 320, 1092–1095 (2008).

13. Chang, L. J., Smith, A., Dufwenberg, M. & Sanfey, A. G. Triangulating the
neural, psychological, and economic bases of guilt aversion. Neuron 70,
560–572 (2011).

14. Nihonsugi, T., Ihara, a & Haruno, M. Selective increase of intention-based
economic decisions by noninvasive brain stimulation to the dorsolateral
prefrontal cortex. J. Neurosci. 35, 3412–3419 (2015).

15. Hein, G., Morishima, Y., Leiberg, S., Sul, S. & Fehr, E. The brain’ s functional
network architecture reveals human motives. Science 351, 1074–1078 (2016).

16. Berg, J., Dickhaut, J. & Mccabe, K. Trust, reciprocity, and social-history.
Games. Econ. Behav. 10, 122–142 (1995).

17. Dufwenberg, M. & Gneezy, U. Measuring beliefs in an experimental lost wallet
game. Games. Econ. Behav. 30, 163–182 (2000).

18. O’Doherty, J. P., Hampton, A. & Kim, H. Model-based fMRI and its
application to reward learning and decision making. Ann. N. Y. Acad. Sci.
1104, 35–53 (2007).

19. Chang, L. J., Gianaros, P. J., Manuck, S. B., Krishnan, A. & Wager, T. D. A
sensitive and specific neural signature for picture-induced negative affect.
PLoS Biol. 13, e1002180 (2015).

20. Huth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E. & Gallant, J. L.
Natural speech reveals the semantic maps that tile human cerebral cortex.
Nature 532, 453–458 (2016).

21. Kamitani, Y. & Tong, F. Decoding the visual and subjective contents of the
human brain. Nat. Neurosci. 8, 679–685 (2005).

22. Mitchell, T. M. et al. Predicting human brain activity associated with the
meanings of nouns. Science 320, 1191–1195 (2008).

23. Wager, T. D. et al. An fMRI-based neurologic signature of physical pain. N.
Engl. J. Med. 368, 1388–1397 (2013).

24. Woo, C.-W., Chang, L. J., Lindquist, M. A. & Wager, T. D. Building better
biomarkers: brain models in translational neuroimaging. Nat. Neurosci. 20,
365–377 (2017).

25. Haxby, J. V., Connolly, A. C. & Guntupalli, J. S. Decoding neural
representational spaces using multivariate pattern analysis. Annu. Rev.
Neurosci. 37, 435–456 (2014).

26. Kriegeskorte, N., Mur, M. & Bandettini, P. Representational similarity analysis
– connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2,
1–28 (2008).

27. Zapala, M. A. & Schork, N. J. Statistical properties of multivariate distance matrix
regression for high-dimensional data analysis. Front. Genet. 3, 1–10 (2012).

28. Wasserman, E. A., Chakroff, A., Saxe, R. & Young, L. Illuminating the
conceptual structure of the space of moral violations with searchlight
representational similarity analysis. Neuroimage 159, 371–387 (2017).

29. Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject
synchronization of cortical activity during natural vision. Science 303,
1634–1640 (2004).

30. de la Vega, A., Chang, L. J., Banich, M. T., Wager, T. D. & Yarkoni, T. Large-
scale meta-analysis of human medial frontal cortex reveals tripartite
functional organization. J. Neurosci. 36, 6553–6562 (2016).

31. van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A. R. B. & Crone,
E. A. What motivates repayment? Neural correlates of reciprocity in the Trust
Game. Soc. Cogn. Affect. Neurosci. 4, 294–304 (2009).

32. van den Bos, W., van Dijk, E., Westenberg, M., Rombouts, S. A. R. B. & Crone,
E. A. Changing brains, changing perspectives: the neurocognitive development
of reciprocity. Psychol. Sci. 22, 60–70 (2011).

33. Van Lange, P.a. M. The pursuit of joint outcomes and equality in outcomes:
an integrative model of social value orientation. J. Pers. Soc. Psychol. 77,
337–349 (1999).

34. Chang, L. J., Yarkoni, T., Khaw, M. W. & Sanfey, A. G. Decoding the role of
the insula in human cognition: Functional parcellation and large-scale reverse
inference. Cereb. Cortex 23, 739–749 (2013).

35. Rousseeuw, P. J. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987).

36. Chang, L. J. & Sanfey, A. G. Great expectations: neural computations
underlying the use of social norms in decision-making. Soc. Cogn. Affect.
Neurosci. 8, 277–284 (2013).

37. Krajbich, I., Adolphs, R., Tranel, D., Denburg, N. L. & Camerer, C. F.
Economic games quantify diminished sense of guilt in patients with damage to
the prefrontal cortex. J. Neurosci. 29, 2188–2192 (2009).

38. Dosenbach, N. U. F. et al. Distinct brain networks for adaptive and stable task
control in humans. Proc. Natl. Acad. Sci. U. S. A. 104, 11073–11078 (2007).

39. Koenigs, M., Barbey, A. K., Postle, B. R. & Grafman, J. Superior parietal cortex
is critical for the manipulation of information in working memory. J. Neurosci.
29, 14980–14986 (2009).

40. Sheth, S. A. et al. Human dorsal anterior cingulate cortex neurons mediate
ongoing behavioural adaptation. Nature 488, 218–221 (2012).

41. Denny, B. T., Kober, H., Wager, T. D. & Ochsner, K. N. A meta-analysis of
functional neuroimaging studies of self- and other judgments reveals a spatial
gradient for mentalizing in medial prefrontal cortex. J. Cogn. Neurosci. 24,
1742–1752 (2012).

42. Van Overwalle, F. & Baetens, K. Understanding others’ actions and goals by
mirror and mentalizing systems: A meta-analysis. Neuroimage 48, 564–584
(2009).

43. Wittmann, M. K. et al. Self-other mergence in the frontal cortex during
cooperation and competition. Neuron 91, 482–493 (2016).

44. Kumaran, D., Banino, A., Blundell, C., Hassabis, D. & Dayan, P.
Computations underlying social hierarchy learning: distinct neural
mechanisms for updating and representing self-relevant information. Neuron
92, 1135–1147 (2016).

45. Civai, C., Crescentini, C., Rustichini, A. & Rumiati, R. I. Equality versus self-
interest in the brain: Differential roles of anterior insula and medial prefrontal
cortex. Neuroimage 62, 102–112 (2012).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09161-6 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1483 | https://doi.org/10.1038/s41467-019-09161-6 |www.nature.com/naturecommunications 13

http://hdl.handle.net/11633/aabwlrrn
http://hdl.handle.net/11633/aabwlrrn
https://github.com/jeroenvanbaar/MoralStrategiesFMRI
https://github.com/jeroenvanbaar/MoralStrategiesFMRI
www.nature.com/naturecommunications
www.nature.com/naturecommunications


46. Nakatani, H. et al. Perceived moral traits of others differentiate the neural
activation that underlies inequity-aversion. Sci. Rep. 7, 43317 (2017).

47. Hill, C. A. et al. A causal account of the brain network computations
underlying strategic social behavior. Nat. Neurosci. 20, 1142–1149 (2017).

48. Mars, R. B., Shea, N. J., Kolling, N. & Rushworth, M. F. S. Model-based
analyses: promises, pitfalls, and example applications to the study of cognitive
control. Q. J. Exp. Psychol. 65, 252–267 (2012).

49. Foulkes, L. & Blakemore, S. J. Studying individual differences in human
adolescent brain development. Nat. Neurosci. 21, 315–323 (2018).

50. Battigalli, P. & Dufwenberg, M. Dynamic psychological games. J. Econ. Theory
144, 1–35 (2009).

51. Peysakhovich, A., Nowak, M. A. & Rand, D. G. Humans display a ‘cooperative
phenotype’ that is domain general and temporally stable. Nat. Commun. 5,
1–8 (2014).

52. Poncela-Casasnovas, J. et al. Humans display a reduced set of consistent
behavioral phenotypes in dyadic games. Sci. Adv. 2, e1600451 (2016).

53. Galizzi, M. M. & Navarro-Martinez, D. On the external validity of social
preference games: a systematic lab-field study.Manage. Sci. (2018). https://doi.
org/10.1287/mnsc.2017.2908

54. Levitt, S. D. & List, J. A. What do laboratory experiments measuring social
preferences reveal about the real world? J. Econ. Perspect. 21, 153–174 (2007).

55. Nisbett, R. E. & Wilson, T. D. Telling more than we can know: verbal reports
on mental processes. Psychol. Rev. 84, 231–259 (1977).

56. Haidt, J. The new synthesis in moral psychology. Sci. (80-.) 316, 998–1002
(2007).

57. Tetlock, P. E. Social functionalist frameworks for judgment and choice:
Intuitive politicians, theologians, and prosecutors. Psychol. Rev. 109, 451–471
(2002).

58. Yeshurun, Y. et al. Same story, different story. Psychol. Sci. 28, 307–319
(2017).

59. Murphy, R., Ackermann, K. J. & Handgraaf, M. J. Measuring social value
orientation. Judgm. Decis. Mak. 6, 771–781 (2011).

60. Jones, W. H., Schratter, A. K. & Kugler, K. The guilt inventory. Psychol. Rep.
87, 1039–1012 (2000).

61. Akaike, H. A new look at the statistical model identification. IEEE Trans.
Autom. Contr. 19, 716–723 (1974).

62. Hurvich, C. M. & Tsai, C.-L. Trust Regression and time series model selection
in small samples. Biometrika 76, 297–307 (1989).

63. Wagenmakers, E.-J. & Farrell, S. AIC model selection using Akaike weights.
Psychon. Bull. Rev. 11, 192–196 (2004).

64. Sul, S., Güroǧlu, B., Crone, E. A. & Chang, L. J. Medial prefrontal cortical
thinning mediates shifts in other-regarding preferences during adolescence.
Sci. Rep. 7, 1–10 (2017).

65. Poser, B. A., Versluis, M. J., Hoogduin, J. M. & Norris, D. G. BOLD contrast
sensitivity enhancement and artifact reduction with multiecho EPI: parallel-
acquired inhomogeneity-desensitized fMRI. Magn. Reson. Med. 55,
1227–1235 (2006).

66. Diedrichsen, J. & Kriegeskorte, N. Representational models: a common
framework for understanding encoding, pattern-component, and
representational-similarity analysis. PLoS Comput. Biol. 13, 1–33 (2017).

Acknowledgements
This research was supported by European Research Council project 313454 (to A.S.) and
the National Institute of Health R01MH116026, R56MH080716 (to L.C.). We thank Felix
Klaassen for his help in data collection.

Author contributions
A.S. and J.v.B. designed the study; J.v.B. performed the experiments; all authors designed
the computational model; J.v.B. and L.C. analyzed the data; all authors wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
019-09161-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous
reviewers for their contribution to the peer review of this work. Peer reviewer reports are
available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09161-6

14 NATURE COMMUNICATIONS |         (2019) 10:1483 | https://doi.org/10.1038/s41467-019-09161-6 | www.nature.com/naturecommunications

https://doi.org/10.1287/mnsc.2017.2908
https://doi.org/10.1287/mnsc.2017.2908
https://doi.org/10.1038/s41467-019-09161-6
https://doi.org/10.1038/s41467-019-09161-6
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	The computational and neural substrates of moral strategies in social decision-making
	Results
	Individual variation in decision strategies
	Individual variation in brain activity reflects differences in strategy
	Classifying participants’ strategies based on model parameters
	Decision strategies are associated with distinct brain patterns
	Consistent brain patterns across conditions
	Moral opportunists shift brain patterns

	Discussion
	Methods
	Participants
	Experimental procedures
	Task
	Stimulus presentation
	fMRI data acquisition
	Additional measures
	Participant payment
	Behavioral data analysis
	Computational modeling
	Clustering participants by moral strategy
	Behavioral differences between strategy groups
	Replication study
	fMRI preprocessing
	fMRI GLM analysis
	Inter-subject representational similarity analysis (IS-RSA)
	Cluster strength analysis
	Similarity analysis of Moral Opportunists to GA and IA
	Reporting summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS




