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Abstract:

Humans learn how to behave directly through environmenjatgence and indirectly through rules and instructions.
Behavior analytic research has shown that instructionscoatrol behavior, even when such behavior leads to sub-
optimal outcomes (Hayes, 1989). Here we examine the cooftdothavior through instructions in a reinforcement-
learning task known to depend on striatal dopaminergictfanc Participants selected between probabilistically
reinforced stimuli, and were (incorrectly) told that a Sfiestimulus had the highest (or lowest) reinforcement prob
ability. Despite experience to the contrary, instructidreve choice behavior. We present neural network simulatio
that capture the interactions between instruction-dramed reinforcement-driven behavior via two potential neura
circuits: one in which the striatum is inaccurately traifgdinstruction representations coming from prefrontal cor
tex/ hippocampus (PFC/HC), and another in which the stridaarns the environmentally based reinforcement con-
tingencies, but is “overridden” at decision output. Bothd®ls capture the core behavioral phenomena but, because
they differ fundamentally on what is learned, make distipredictions for subsequent behavioral and neuroimag-
ing experiments. Finally, we attempt to distinguish betwélee proposed computational mechanisms governing
instructed behavior by fitting a series of abstract “Q-l@aghand Bayesian models to subject data. The best-fitting
model supports one of the neural models, suggesting thieagisof a “confirmation bias” in which the PFC/HC sys-
tem trains the reinforcement system by amplifying outcothas are consistent with instructions while diminishing
inconsistent outcomes.

Introduction for retirement, and to obey traffic laws without experienc-
ing the negative outcomes that result from violating these
Functionally, reinforcement increases the probabilitules personally.
of the behavior that precedes it. Conversely, punishment Nevertheless, individuals also learn when rules do
decreases the probability of the behavior that precedesiét apply. Various dual process models posit separa-
A rich literature catalogs this trial-and-error learniny tle decision-making systems that contribute to rule-based
environmental contingencies (Thorndike, 1911; Skinngrdescriptive choices versus those based on experience
1938; Baum, 2004) Trial-and-error learning is, however,procedural-learning (Sloman, 1996; Ashby, Alfonso-
less than ideal. Testing possible contingencies is a costi¢ese, Turken, & Waldron, 1998; Hertwig, Barron, We-
and sometimes dangerous, strategy. Humans have og&! & Erev, 2004; Kahneman, 2003). Here, we ex-
options. By using rulésand instructions, we can reap th@mine rule-following in a reinforcement learning task
benefits of others’ trial-and-error learning without persowith well-studied neural correlates, and explore plawsibl
ally investing the time or enduring the perils associateurocomputational interactions between rule-based and
with such an exercise. We can learn not to smoke, to sa¥ghforcement-based systems that may produce this pat-
tern of behavior.

Brain Researchin press (Special issue on computational  Rule-following is typically adaptive, and people may
cognitive neuroscience). We thank Scarlett Coley for &ést® pe biased to follow instructions even when they are inac-
with figures, Nathaniel Daw and two anonymous reviewers fg{,rate (Galizio, 1979; Hayes, Brownstein, Zettle, Rosen-
helpful comments and suggestions. farb, & Korn, 1986; Hayes, 1993). An early study on the

IHere, we use the word “rule” in the behavior-analytic serseer- ffect k to behavi lvst “cul "
bal statement (in this case, instruction) that controlsaieln (Hayes, €lfect known 1o behavior analysts as ‘rule-governance

1993). While behavior shaped by trial-and-error expegsmay be de- iS illustrative. Kaufman, Baron, and Kopp (1966) placed
scribable by a rule, such behavior is not referred to asgalerned, but subjects on a variable-interval (VI) schedule for mone-
rather, controlled by contingencies in the environmentis Thbecause tary reward. The experimenters accurately described the

such behavior is shaped by interactions with contingencaber than . L .
through interactions with verbal rules underlying schedule to one group of individuals and in-




accurately described the schedule to two others: telling TRAIN INSSI';II;ISC?‘I?'IIEED‘EI:EST
one of the latter groups they would experience a variabfe-

ratio (VR) schedule, and the other they would experience
a fixed-interval (FI) schedule. Despite the identical (VI) i J}
contingencies shared among groups, the participants i
each group exhibited response patterns characteristicof
C
F

the instructed schedule over a 3 hour period: those ih (80/20) B (20/80)

the VR group responded at high rates, those in the FI HOOSE AVOID
group responded at low rates, and those in the VI graup F
responded at the expected moderate rates. % 0)

Experiments investigating category learning in hu- AVOID ‘F’
mans show the opposite effect, such that useful catege INSTRUCTED TEST

sky, Clark, & Shin, 1989), subjects classified objects into

one of two groups based on a number of attributes. After %

each categorization trial, subjects received feedbacktabo
the accuracy of their choice. One group received instruce (60/40)  F (40/60)
tions permitting them to categorize stimuli accuratelg th

other learned to categorize by trial and error. Follow-

ing a training period, subjects categorized novel stimultigure 1:Probabilistic selection task. Example stimulus pairs,
Though instructed subjects received and practiced a rwlgich minimize explicit verbal encoding by using Japanese H
that could facilitate accurate categorization of these téagana characters. Each pair is presented separatelyenedif
stimuli, they did not always follow this rule, instead thejfials- The three different pairs are presented in randateroo
reverted to categorization by similarity. Uninstructetisu ¢reate blocks of 60 trials (20 per stimulus pair). Correciices

. .. .are determined probabilistically, with percent positiegative
JeCtS. showgd a g_reater tendency to group by _S|m|Iar| edback shown in parentheses for each stimulus. Whendewar
leading the investigators to conclude that inductive lear as programmed for a given stimulus, a punishment was pro-
ing about similarity had interfered with the use of instru%—rammed for its paired alternative. A iest (transfer) pHabe

tions. lows in which all possible stimulus pairs are presented. The
Noelle has developed a connectionist model of ieffect of instructions on learning is measured by perforcean

structed learning that produces the effects found in cate-all pairs featuring the instructed stimulus. “Choosedfers

gory learning experiments (Noelle & Cottrell, 1995, 1996 test pairs in which choice of stimulus F is optimal accogi

2000). This model learns both to follow instruction& reinforcement probabilities, whereas “Avoid F” refevgairs

(modeled by setting the initial attractor states of the né@_w_hlgh the optimal choice is to select the alternative stim. _

work), and from trial and error. When following instrucD8viations from the accurate response (e.g. choose F, &oid

. ' . . . indicate instructional control.

tions, the model behaves like human subjects, sometimes

making categorization errors based on similarity when

instruction-following would produce a more accurate outoncrete hypotheses for the neural underpinnings of rule-

come. following, and produces a number of testable predic-
We build on this work by developing a biologicallytions for future empirical work. We then develop ana-

anchored model of the mechanisms that may undefii@cal mathematical models that attempt to capture the

instruction-following even when experience indicates th@ssence of the two proposed neurobiological mechanisms

the instructions are incorrect. To this end, we replica@ instruction-following in abstract form. Qualitativedit

the basic behavioral ru|e-governance effect using a te@jﬁhese models to subject data allow us to test between the

with well-studied neural correlates (Frank, Seeberger,@mputational accounts produced by the network simula-

O'Reilly, 2004; Frank, Woroch, & Curran, 2005; Franktions. Finally, we fit Bayesian models to subject data, in

Moustafa, Haughey, Curran, & Hutchison, 2007a; Klei@rder to test alternative accounts for instruction-follogy

Neumann, Reuter, Hennig, von Cramon, & Ullspergd¥ehavior and individual differences therein.

2007). We then modify a neural network model of

the reinforcement learning processes thought to govern

performance in this task (Frank, 2005) to accommodate

instruction-following. The modified model generates two

rization rules are sometimes abandoned in favor of categds (70/30)  D(30/70)
rization by similarity (Allen & Brooks, 1991; Neal, Hes-
keth, & Andrews, 1995). In one such experiment (Nosaf- 5
C

&
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Methods The following symbol will have the lowest probability
of being correct, so you should avoid selecting it. [The
Subjects A total of 34 subjects participated in theHiragana symbol for stimulus E was displayed.] You'll
experiment. Initially, a group of 18 subjects completdtave to figure out which of the other symbols you should
the experiment with the instructional manipulation deselect when they appear by trying them out. Use the “1”
scribed below. Two of these subjects failed to learn they to select the figure on the left. Use the “0” key to
task to criterion and were excluded from the analysis. Eselect the figure on the right.

perimental subjects were initially compared to historical The remaining instructed subjects received the same
controls from a similar demographic (Frank, Santamarigstructions, but were shown the symbol for stimulus F
O'Reilly, & Willcutt, 2007c). Because of differences inand told (again, misleadingly) that it would have the high-
training criteria (we removed the EF training criteria i@st probability of being correct, and so it should be se-

the experimental subjects), data from a group of 16 subcted?. Both sets of inaccurate instructions, if followed,
jects were subsequently collected. In the analyses that ffloduce selection of the F stimulus.

low we compare these 16 uninstructed controls (hereafter, afier completing the instructions, the experimenter

uninstr_ucted subjects) \_/vith the 16 remaining experimefsyed the subjects how many figures were to appear on
tal subjects (hereafter, instructed subjects). (A folle- yhe screen at once and how they would select the figure
experiment with controls and experimental subjects rgR eijther side. Subjects were shown a card with all six
simultaneously produced similar results to those reportgehacters that would appear in the task and were asked
here. This experiment was intended to test other aspggifygicate which had the highest (or lowest, depending
of |nstruct|(.)r1-f.ollowmg_wh|ch we do not consider here.)on condition assigned) probability of being correct. All
Probabilistic Selection Task. Instructed GrouBub- subjects answered these questions correctly on the first at-
jects completed a probabilistic selection task (Frank.et abmpt.
2004) consisting of a training followed by a test phase Next, subjects completed the training phase in which
(Figure 1). In the training phase, subjects were presenjggy \vere randomly exposed to 20 trials of each stimu-
with one of three stimulus pairs per trial. We refer to theggs pair in 60-trial blocks. Previous versions of this task
stimuli as AB, CD and EF, although they were display&gtrank et al., 2004; Frank et al., 2007c) have required sub-
to subjects as Japanese Hiragana characters to minimiges 1o reach a performance criterion on each stimulus
verbal encoding. Feedback following selection of a StiMair within a single block (65% A choices on AB, 60%
ulus indicated that the choice was either “correct” or “inc choices on CD. and 50% E choices on EAyaining
correct”. Stimuli were probabilistically rewarded, sucBjocks are repeated until criteria on all three stimulusspai
that no stimulus was always correct. In stimulus pair ABye met within a single block. In the current experiment,
for example, choice of stimulus A led to positive feedbagke A and CD criteria were retained, but the EF crite-
in 80% of trials, whereas choice of B led to negative fee(fﬂbn was removed because inaccurate instructions should
back in those trials (CD and EF pairs provided 70/30pqquce below chance performance on this pair. Two sub-

and 60/40% positive feedback respectively). During the.is tajled to meet training criteria, and their data were
test phase, subjects received all possible pairings of stig}|,ded from analysis.

uli without fee-dback. ) . After the training phase, the subjects completed a test

The experimenter asked the instructed subjects to reaflse in which they received all novel combinations of
the task instructions on a computer carefully and eggmyji interleaved with the original training pairs. Sub-
plained they would receive a quiz to ensure they U”d?étts were told they would see new and old pairings of
stood the instructions fully. The instructions read as fake stimuli they had learned about, but would not receive
lows: feedback following their choice. They were told to simply

Two black symbols will appear simultaneously ogo with their “gut” feeling in selecting the stimulus most
the computer screen. One of the symbols will be “cofikely to be correct. Each test pair appeared four times in
rect” and one will be “incorrect,” but at first you won'trandom order. Subjects received no feedback during the
know which is which. Try to guess the “correct” figure

as quickly and accurately as possible. There is no AB
SOﬁUTEyri ht answer bﬁt Sofne symbols have a high 2In a follow-up experiment the manipulation was presentecaas
g ! Yy g Wnt" (e.g. F will be the best) with no specific instruction select

chance of being correct than others. Try to pick the Sym-avoid the instructed stimulus. This manipulation prastisimilar
bol that you find to have the highest chance of being cogsults to those reported here
rect. 3These criteria were used to ensure that participants peeisuffi-

. . . . . ciently well in the test phase (ultimately used to evaluatative learn-
Following these instructions, nine subjects read thg from positive and negative feedback) without havingXpezience
following (misleading) statement: excessive numbers of training trials.




test phase. in the first 10 trials to that of the last 10 trials across all

Probabilistic Selection Task. Uninstructed Grougs subjects. For instructed subjects, EF performance was
uninstructed subjects completed the task described abdgere inaccurate during the first ten trials (14.4%, sd:
These subjects received the standard instructions wi##§-5%) than during the final 10 trials (36.9%, sd: 26.3%),
out instructions about any specific stimulus. Additionall{t(15) = -2.94, p =.01). Despite this improvementin per-
these subjects received six presentations of each stimiffgnance over blocks, EF accuracy for instructed subjects

during the test phase. remained below that for uninstructed subjects during the
final ten trials (instructed accuracy: 36.8%, sd: 26.2%;
Behavioral Results and Discussion uninstructed accuracy: 52.5%, sd: 24.6%; t(30)= -1.73,

] o ) p<.05. one-tailed) (Figure 2b). This pattern of data sug-

As expected, misleading instructions produced sUfjssts that, although instructed subjects learned from-expe
optimal choice behavior on the instructed stimulus alongance (given their increased accuracy over blocks), they
This effect occurred during both the training and tegiq so at slower rate than expected. Subjects in previ-

phases. ous studies exhibited rough probability matching on all
. pairs in a comparable number of trials (e.g., Frank et al.,
Training 2007¢).

Consistent with previous data, subjects matched the Because the number of training trials depends on sub-
proportion of their responses to the proportion of positiyects accuracy in the AB and CD pairs, it is possible that
feedback outcomes associated with that stimulus chotBese reaching performance criteria after relatively few
during the training phase (e.g., Estes, 1950; Frank et Hials may not have been exposed to sufficient instances of
2004)* This pattern occurred on all but the instructetginforcement feedback to be able to determine that the E

stimulus pair, in which choice was in accordance with ttéimulus had a higher probability of being correct than the
instructions rather than the true probabilities. F stimulus. To address this possibility, we fit a Bayesian

Choice in the EF pair by instructed subjects was sugarning model (see below for details) to subject data.
optimal. Despite experiencing negative feedback on 60% We compared posterior distributions produced by this
of trials, these subjects continued to show a preferenceff@pdel for the E and F stimuli at the end of the train-
the F stimulus throughout the training phase (Figure 2#)9 phase. We then considered whether the above effects
In the last block of instructed pair trials, these subjedi®ld after filtering out participants who were judged not
chose the optimal stimulus E only 36.5% (standard detehave sufficient feedback to discriminate between E and
ation (sd): 22.4%) of the time, whereas uninstructed suUb-Because the threshold for determining whether there
jects chose it 53% (sd: 19%) of the time. Across training/as sufficient feedback is arbitrary, we used a liberal and
a mixed-model ANOVA revealed an effect of instructiongore conservative threshold. In the liberal case we sim-
(F(1,30)= 8.84, p =.0058) and of stimulus type (F(2,3®)y eliminated the 4 subjects (2 in each group) whose final
= 38.91, p<.0001), but no significant interaction betweeh modes were not actually lower than those of E (which
instructions and stimulus type (F(2,30) = 2.81, p = .076)ould occur due to spurious probabilistic feedback). In
Planned comparisons revealed that the instructed subjéiags conservative case we eliminated 12 subjects (6 in
selected the incorrect stimulus F significantly more ofach group) whose final F modes were not at least one
ten than the uninstructed subjects (uninstructed accuregfandard deviation below those of stimulus E. Neither of
51%, sd: 16.9%, instructed accuracy: 34.1%, sd: 17.6these filtering measures changed the pattern of effects de-
t(30)=2.78, p=.005). scribed above (Liberal: instructed subjects first tengrial

These results might occur if subjects followed the if18-4%; sd: 15.5%) compared to last ten (40%, sd: 25%)
structions early in training then switched their behavidl4)=-2.73, p=.02; lastten instructed subject trial 440

after experiencing the true reinforcement contingenci€s: 25%3 compare;j to Iast_ten unin_structed subject_tri-.
Because some subjects completed the training phas@/h(58-6%, 5d:19.2%) {(26)= -2.15, p=.04. Conservative:
one block (experiencing a total of 20 EF trials), we adstructed subjects first ten trials (18%, sd:14.8%) com-

sessed learning of the EF pair by comparing performarR@€d to last ten (37%, sd:27%) (9)=-2.08, p=.067; last
ten instructed subject trials (37%, sd:27%) compared to

last ten uninstructed subject trials (66%, sd:17%) t(18)=-
2.86, p=0.01)).

4Although this response profile is sub-optimal (Given theicstae-
inforcement probabilities in this experiment, in prineéubjects could
maximize reward rate by always choosing the more frequerttyect
response in each pair), the tendency to probability matthdsght to  Test Phase
reflect the inherent tendency for subjects to explore atem options

to determine whether they might be better than the curresetiycted op- Performance during the test (transfer) phase provides

gﬁgr(gg‘(’)"é)o'DOhe”y' Dayan, Seymour, & Dolan, 2006; Lau &6l 5 maagure of the extent to which subjects learned about
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Figure 2:a) Instructed subjects frequently chose stimulus F in thedlstk of the training phase, despite the repeated negative
feedback that resulted from doing so. These subjects whtéhat either that the F stimulus (40% correct) would haeethighest
probability of being correct, or that the E stimulus (60%reot) would have the lowest probability of being correct. akttual
fact, the E stimulus was more likely to be correct. The ingttams did not affect learning of the uninstructed pairs, &l CD.
Performance in the last 20 trials of each stimulus pair iswwhbere. Historical controls (Frank et al., 2007c) plottedehshow
rough probability matching on all stimulus paits. Experience with the true contingencies reduced the infli@hmstructions on
choice. However, by the end of training, subjects continwechoose more in accordance with the instructions than thighrue
probabilistic contingencies.

the task contingencies. Recall the experimenter told ttieoice (and should have been chosen), approached but did
subjects they would see both new and old pairings of thet quite reach statistical significance, perhaps due fo lac
stimuli from the training phase, and to go with their “gutdf power (F(2,29) = 3.2, p =.0556). Subjects did not differ
on these novel pairs. Therefore, the test phase provides ahoosing F when it should have been chosen (F(2,29)
measure of the degree to which subjects integrated remn84, p = .4419) or in avoiding E when it should not have
forcement values during the training phase. Performarsen avoided (F(2,29) = 2.54, p = .0961) (Figure 3). Re-
during the test phase also provides a way to determinenibval of the subjects with posterior modes for E less than
subjects would follow instructions or rely on establisheahe standard deviation above F did not alter these results
reinforcement values in a novel context, particularly givgsubjects instructed to pick F were impaired at avoiding it:
that instructed subjects’ training performance approdche(2,17)= 5.66, p=0.0131, while impairments in subjects
that of uninstructed subjects toward the end of training.instructed to avoid E did not reach significance F(2,17) =

The subjects told that F would be good should be in-79, p=.197).
paired at avoiding F when it is paired with relatively more Given that all of the subjects correctly learned the re-
positive stimuli A, C, and E (80%, 70%, and 60% prolward probabilities associated with the uninstructed stim-
abilities respectively). Subjects told that E would be badi, these results are striking. During the training phase,
should be impaired at picking E when it is paired witbhoice of A and C produced greater reward (roughly twice
relatively less positive stimuli B and D (20% and 30%s often) than choice of F. Subjects told that F had a high
probabilities respectively) (Figure 1). probability of reward, however, consistently chose it over

A mixed-model ANOVA revealed a main effect ofstatistically superior stimuli. Similarly, choice of B and
type of instruction (choose F, avoid E, and uninstructeB)produced fewer rewards than choice of E. Nevertheless,
between subjects (F (2,29)= 4.58, p = .0030), no withfitbjects instructed to avoid E tended to, even when avoid-
Subjectg effect of test measure (avoiding F or p|ck|ng EF\CG resulted in selection of statistically inferior stlmu
(F (1,29) = .8, n.s.) but a significant interaction betweadife found no differences in reaction times between groups
instructions and test measure (F(2,29) = 11.45, p = .000®)the training or test phases.

These effects were driven by group differences in . .
avoiding F when it was the less optimal stimulus (arl@dividual Differences

should have been avoided) (F(2, 29) = 10.9, p =.0003). |5 the analysis above, we looked for effects at the
Group differences in choosing E when it was the begloyp level. An inspection of individual subject data,
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Figure 3: a) Subjects instructed that F had the highest probability dfidoeorrect were more likely to choose F in the test
phase when it was statistically suboptimal according tofeecement probabilities (Avoid F condition), and weretjas likely as
uninstructed subjects to select F when it was optilpBubjects instructed that E had the lowest probability oh&iorrect were
marginally more likely to avoid E when it was actually the maptimal response in the test phase (Choose E conditioth)vare
just as likely as uninstructed subjects to avoid E when it svdmptimal.

however, revealed interesting within-group differena@s fpeting analytical models to map on to, and thereby test
those receiving misleading instructions. In this groupe fibetween, the core computational accounts by which the
of the sixteen subjects chose correctly on the EF pair omatworks function. Thus, our network simulations serve
least 50% of the last 10 training trials. These subjects apwt only to generate biologically plausible hypotheses, bu
peared to be responding according to the experienced caise to guide and constrain the types of analytical models
tingencies rather than instructions. Although all sulgeaised to test these hypotheses. Finally, we fit Bayesian
initially followed the instructions, they were not equallynodels (which are not strongly constrained by network
likely to continue to do so throughout the learning trialsaccounts, but reflect the “ideal observer”) to subject data.

Visual inspection of the instructed training trials also We hypothesize that the rule governance effect seenin
suggested variability in learning about the true contiour paradigm is the product of competition and/or cooper-
gencies (see appendix for representative learning curvesipn between two neural systems. One of these systems,
While some subjects seemed to gradually move towadkpendent on the basal ganglia (BG), integrates reinforce-
the correct stimulus, E, several others abruptly switchetkent contingencies slowly by trial-and-error. The other
response policies from choosing F to choosing E. Classystem, dependent on the prefrontal cortex and hippocam-
fying subjects on visual inspection of learning curves ipus (PFC/HC), rapidly updates representations based on
troduces the bias of the rater. In attempt to reduce sugihgle outcomes or salient details. We expect this system
bias, we developed computational models that assess liotbncode task instructions.

gradual learning and quick “insight-type learning (see Q- wide support exists for the key role of the BG, and
learning Models section). the neurotransmitter dopamine (DA), in both Pavlovian

and instrumental learning (Schultz, Dayan, & Montague,
Computational Approach and Theory Sketch 1997; Schultz, 2007; O’'Doherty, Dayan, Schultz, Deich-

Our approach is to model instruction-following/rule[nann’ Friston, & Dolan, 2004), as well as habit learning

governance in both biologically constrained neural nétc_;raybml, 1998; Yin & Knowlton, 2006). PhaSIC changes
works and with simpler analytic models. First, we modi N DA levels follow feedback from the environment and

an existing and well supported neural network model pnstitute a prediction error” signal, which can be used

reinforcement learning, and show that our theoreticalllg0 drive learning (Montague, Dayan, & Sejnowski, 1996,
]

motivated modifications to include instructions can rep >chultz, 2007). Phasic bursts of DA occur when outcomes

cate the effect seen in human subjects. We explore S better than expected and phasic dips occur Whef‘ out
: - o . . comes are worse than expected. These bursts and dips are
possible circuits by which instructions can influence pet- . I
r&ught to increase and decrease the likelihood of the ac-

formance. The two hypotheses generated by the ne . L .
network simulations are then tested with simpler anal tic_).n pre_cedlng the feedbgck“by faC|I|ta.t|ng,;' synaptic plas-
ity, with bursts promoting “Go learning” by means of

ical models fit to subject data. We designed these cort’



D1-dependent LTP, and dips promoting “NoGo learning/ironmental contingencies independently, but over-gdin
by means of D2 receptor disinhibition (Nishi, Snyder, &he expression of this learning in behavior. Our simula-
Greengard, 1997; Frank, 2005). tions demonstrate the plausibility of either of these cir-

We begin our modeling by assuming that the préulits in producing rule-governance, but make different
frontal cortex (PFC) and hippocampus (HC) work td2redictions for both the underlying neural activation and
gether to produce the rule governance effect. By this vieilte extent to which rule-like or reinforcement-driven be-
the PFC encodes representations of instructions in an @vior will generalize to novel situations (e.g, if the rule
tive state that can provide top-down biasing on behavi@sed system is taken off-line or if the implicit striatassy
(e.g, Miller & Cohen, 2001). The working memory catem is primed in the absence of awareness). Next we re-
pacity of the PFC also allows for the flexible updating d¥ort results from neural network simulations, followed by
behavior in the interest of current goals, as well as rgore abstract mathematical “Q-learning” models that can
bust maintenance of these goals in the face of distractiopVvide quantitative fits to individual subject data using
A number of neuroimaging studies report PFC activatiéhminimal number of parameters, to determine which (if
during rule-based learning (Filoteo, Maddox, Simmonany) of the various posited mechanisms provide the best
Ing, Cagigas, Matthews, & Paulus, 2005; Nomura, Mafit-
dox, Filoteo, Ing, Gitelman, Parrish, Mesulam, & Reber,

2007) as well as during rule-retrieval (Bunge, Kahn, waNeural Network Model
lis, Miller, & Wagner, 2003). The HC on the other hand,

. . X The basic, uninstructed probabilistic selection task
encodes distributed representations of contexts, sétteg b

. ) o was developed to test predictions from a computational
occasion for a particular behavior in the presence Ofas%?édel of the basal ganglia and its modulations by phasic

cific context (for more discussion on relative Contribugo%hanges in dopamine during positive and negative feed-
of PFC and HC, see Atallah, Frank, & O'Reilly, 2004). back (Frank, 2005Y. Data consistent with these pre-

We posit that rule-following involves not only activégictions were reported in several recent studies in which
maintenance of PFC rule representations, but also retraggmipulations of the striatal dopamine system produced
tive retrieval of the rule from episodic memory (HC; Sefatterns of learning biases in accord with those simu-
Braver, Gray, & Burgess, 2007). Recent work SUppoiigeq (Frank et al., 2004; Frank & O'Reilly, 2006; Frank
this view. Nomura et al. (2007) demonstrated that Suge | 2007a; Klein et al., 2007; Frank et al., 2007c; Frank,

cessful categorization of stimuli best grouped by simpt¢; manta. Moustafa. & Sherman. 2007b: Cools. Altami-
verbal rules elicits frontal and hippocampal activatiopgng & D’Esposito, 20086).

whereas successful categorization of stimuli bestgroupedThe basic BG model (Figure 4) is instantiated using

.the Leabra neural simulation framework (O’Reilly & Mu-

ity. Bunge and Souza (2008) review a number of imagin . . . :
studies of rule representations, and conclude that ndae-é%kata’ 2000), and uses phasic changes in dopamine dur

associations are stored in the temporal lobes and retriehr%reinforcement to drive synaptic weight changes rather
and maintained by PFC. Goto and Grace (2007) Sugges n an explicit supervised error signal (Frank, 2005). A

o . int neuron” function simulates rate-coded activatibn o
that the HC gates PFC activation of the striatum, such tlﬁ%ﬁ

. - . ) work units, as a dynamic function of their membrane
hippocampal episodic contextual memories can influence, = . A . . .

. . potential, which itself is computed as a differential equa-

the degree to which prefrontal rules influence output be

havior tion function of three ionic channel conductances (excita-
: ) _ tion, inhibition, and leak). Parameters of neuronal firing
~ Anatomical studies suggest that the PFC/HC systeRyjifferent BG areas are tuned to match qualitative firing
might produce rule-governance in one of two ways. Akatterns in the various brain regions (see Frank, 2006 for
though this system projects widely in the brain, the majfathematical details and parameters).
projections of interest are those terminating in the stria- On each trial, the network receives an input stimulus
tum, and those terminating in motor cortex / premotQr iy . :
; . . .~~and executes a given motor response after its associated
planning areas (e.g, Wallis & Miller, 2003). Rule-like
representations in the PFC/HC may bias the striatum_to

learn what is described by rules, regardless of the trug’Due to space limitations, we primarily confine our discussis

contingencies experienced This is consistent with the él;g_network model to the modifications undertaken to prodieeule-
) governance effect. The effects of our modifications are malstant

istence of “Spllt circuits” |nvoIV|ng !nteractlo_ns betwee at the level of the striatum and premotor cortex. Other sateal layers
prefrontal-striatal loops and those involved in motor coge.g. globus pallidus, subthalamic nucleus, etc.) supamion selection
trol (Joel & Weiner, 1999). Alternatively, rule-like repre and have particular computational functions but do not playitical

; ; ; le in the rule-governance effect we replicate here, aedefbre are
sentations may bias the behavior at the level of the rTL%tdiscussed at length. For a detailed discussion of the baxlel, the

tor cortex, leaving the striatum to learn the correct eferested reader should refer to Frank, 2005, 2006.




Input (sensory cortex) Output (M1) and the others suppressed.

Following the network’s choice, phasic changes in
dopamine firing occur to simulate reinforcement feed-
back: DA bursts for positive outcomes and dips for neg-
ative outcomes. Connection weights are adjusted based
on the difference between pre and postsynaptic activity
states across the response selection (tonic DA) and feed-
back (phasic DA) phases. Bursts activate the Go units
in the striatum (via D1 receptor stimulation) and inhibit
the NoGo units (via D2 receptor stimulation). This oc-
curs after correct choices, and increases the probability
that Go activity in the striatum will elicit the correct ac-
tion in motor cortex. DA dips, on the other hand, together
with ongoing excitatory (glutamatergic) projections from
the cortex, allow the NoGo units to become disinhibited.
An increase in the efficacy of No-Go units prevents ac-
SNe GP Int tivation of the incorrect motor response and makes that
choice less likely in the future. This results in the tragin
of “Go” and “No-Go” columns in the striatum, which pro-

R1 R2

l" PreSMA
/ /) /
" y

effects of dopaminergic manipulation on a variety of pralsb . .
: : ; ._of the two possible motor responses. Intially, the selected
tic learning tasks using the same network parameters. $timu

presented in the input layer directly (but weakly) activate- reSponS? IS th? prOd_UCt ‘?f ,random connection weights, to-
tor cortex. In order to execute an action, the motor cortex 1@&ther with noisy unit activity, but becomes the product of
sponse requires bottom-up thalamic activation, which rceia  1€@rning as training progresses.

action selection in the BG. When activated, striatal Gosuiit

left half of Striatum) encode stimulus-response conjumgtiand  Simulating the Probabilistic Selection Task

inhibit the internal segment of the globus pallidus (GPi)e-B ] o

cause the GPi is normally tonically active and inhibits the-t  1"e model experiences a training and test phase much
lamus, the effect of striatal Go signal is to release theathaks like that experienced by human subjects. During the train-
from tonic inhibition, allowing it to become activated bypto ing phase, the model receives different input stimuli (each
down projections from motor cortex (PreSMA). In turn, thalarepresented by a column of four input units). After set-
mic activation reciprocally amplifies PreSMA activity, teby tling on an action, the model receives probabilistic feed-
generating a response. Striatal No-Go units have the dgpogiack about the chosen response. Over time, the prob-
effect, via additional inhibitory projections to the extaf seg- gpjlistically superior and inferior responses are learned
ment of the globus pallidus (Gpe), which effectively preed 545 completion of training, the model receives a test
response from being selected. The net Go-NoGo actwn;edlffgpase in which a response is made for each stimulus pre-

ence is computed for each response in parallel by the BG . .
cuitry and the response with the greatest difference israéigie Sentation without feedback. The test phase assesses the

selected. (The subthalamic nucleus (STN) additionally lmoodegree to _Wh'Ch th_e quel striatum had Ie_arned GO_ or
lates the threshold at which a response is executed, in giopo NOGO to different stimuli and responses during the train-
to cortical response conflict, and is included here for csinsicy iNg procedure (Frank et al., 2004; Frank et al., 2007b).
but is not required for the effects reported in this paper). The input layer receives each stimulus alone on differ-
enttrials, and the resulting activity patterns over albsa
. — L - .units are recorded. The summed relative Go to No-Go ac-
striatal *Go” representation is sufficienty greater thian Itivity in the striatum produces an activation-based recep-

corregpo_ndmg NoGo repre_senta}tlon. The output of ﬂ?l@/e field for each response to a stimulus. Networks that
BG circuitry (the globus pallidus) in effect computes th amed a particular stimulus-response mapping with a

Go-NoGo activity difference for each response in parall(laﬂ h probability of being correct should display strong Go

The response with the greatest difference is most likely . . . .
) 3 AN representations for the response associated with choosin
be facilitated via “disinhibition” of the thalamus, allow- P b 9

: . L . that stimulus. Similarly, networks that learn a particular
ing recurrent thalamocortical projections to amplify th y b

corresponding motor cortical response (and suppressg imulus-response mapping with a high probability of be-

it i 2 lateral inhibit o Thuelf ing’incorrect should display stronger NoGo associations
? erna |vef]vL§ alera i Ito?/ competl llon). USH for the corresponding choice. Simulated changes in stri-
owing €ach stimulus presentation, a singie reSponse 1S dopamine levels can influence the degree to which

lected as its corresponding motor cortical units are aCtlxgtworks are biased to learn Go or NoGo (Frank et al



2004; Frank et al., 2007b), as observed in pharmacologig memory representations for task rules (Braver & Co-

cal experiments. hen, 2000; Frank, Loughry, & O'Reilly, 2001; O'Reilly &
Frank, 2006; Rougier, Noelle, Braver, Cohen, & O'Reilly,
Simulating Instructions 2005). As a result, networks dramatically increase the

weights along these projections, such that the instructed

f_We assume tlhat ex?ergtr)\tlali Iza_rmng r']n the abseqﬁsut very likely produces this same "incorrect” response
otinstructions relies on fee ack, riving the BG SySte'Bn subsequent presentations (due to reactivation of the
The reduced effect of feedback in rule-governed behav,g,EC/HC “rule” representation and its associated biasing

s_uggests that the BG system is somehow biased, or O} striatal/motor responses). Following the instructed
ridden by the presentation of rules. trial, the learning rate returns to its lower normal level
The putative neural structures that underlie rule gogn the assumption that prefrontal rule representations
ernance in our manipulation are the PFC and HC. Wge only gated once and thereafter only retrieved). The
model the “top down” bias of these structures on the Bamainder of the training and test phase is completed
by adding a single abstracted PFC/HC layer that receivgs described above with no further manipulation. As
input and projects to the striatum and the motor cortexych, other uninstructed stimuli still activate differelig-
Upon receiving input, the PFC/HC creates an activatiofihuted patterns of PFC/HC units, but these are not asso-
based distributed representation of the stimulus, whichdigted with strong biases to choose a given response.
a product of the layer’s initial random weights. These acti- The complete modified model represents the instruc-

vations then pass through the striatal learning system. -m)%s in the abstracted PFC/HC and projects them to both
inp_ut layer also projects to the striatum and motor COM@Xe striatum and the motor cortex. As noted above, rule-
as in the standard model. governance may result from reactivation of the PFC/HC

For the purposes of our simulations, we have ignorggtruction representations that then bias the BG system
some biophysical details with respect to how rules are §B-select the probabilistically suboptimal response. Due
coded. The added layer, for example, does not featgsg4ebbian learning in corticostriatal projections, reeela
the recurrent projections or specialized intracellul@ico reactivation of PFC/HC rules can train the BG such that it
currents widely used to capture the working memory Cever learns the true probabilistic contingencies, but in-
pacity of the PFC (e.g, O'Reilly & Frank, 2006; Durstestead continually ingrains the association learned by the
witz, Seamans, & Sejnowski, 2000). Nor is the spars@structed trial. Alternatively, the BG may be free to learn
distributed activity thought requisite for episodic encoghe reinforcement contingencies experienced in the envi-
ing in HC present (O'Reilly & Rudy, 2001). Becausgonment accurately, but the PFC/HC can override this BG
we remain agnostic about the specific way in which theg&rning directly by simply biasing the premotor cortical
neural structures drive rule-governance (i.e., the deregiecision outputs. The wiring of these structures lends it-
which the PFC or HC is responsible), these abstractiofisf to either of these possibilities, where PFC/HC con-
do not detract from the results. Our current focus is ¢actions to the BG explain the former, and PFC/HC con-
the downstream (i.e. striatal and motor cortical) effecigctions to the motor cortex explain the latter. To in-
of these structures during instruction-following. Futurgestigate the differential roles of these projections in ou
models will incorporate top-down modulatory structurggodel, we selectively removed them. In the PEC-MC
in a more biologically detailed manner, and attempt to dgrodel, the PEC/HC projects only to the motor cortex (Fig-
cipher the relative contributions of PFC and HC in instrugye 5a). In the PFC-BG model, the PFC/HC projects only
tion updating, maintenance, and retrieval. to the striatum (Figure 5b).

We model instructions by presenting each network
with a single trial in which the instructed stimulus and
its instructed (misleading) response activation at the out
put layer occur together. To model the rapid, single-trial
acquisition of instructions, we use a much higher learomplete Model
ing rate for this trial (see appendix for parameter val-
ues), where this higher learning rate is applied to tr(yfs

\t/t\:elgl;:h':tc(::/r;_lag%e?hfror?_ttle mpugto t?e PFCt:/ch and f_rl_ogérved in human subjects on all but the instructed stim-
N 0 the striatum and motor cortex layers. Thig, (Figure 6a). After stimulus presentation, the model

single high learning rate trial is an attempt to Captute h make one of two probabilistically rewarded responses

the rapid encoding of task rules in the explicit MEMLch that when stimulus S1 is presented, response R1 is

ory system, a process that should depend on the raPrect 80% of the time, whereas response R2 is correct

learning functions of the hippocampus (e.g., O'Reilly 8006 of the i As in the h : f the task
Rudy, 2001) together with the gating of prefrontal work- 6 of the time (As in the human version of the task, on

Neural Network Results

Training PhaseThe instructed and uninstructed mod-
produce the same probability matching behavior ob-



Thalamus Thalamus

Figure 5:Alternative pathways by which rule-based representatiansbias responding in the netwog.In the PFC-MC model,
the PFC/HC “rule” layer projects to the motor cortex, but tethe striatumb)in the PFC-BG model, the PFC/HC layer projects
to the Striatum, but not to the motor cortex. The completeeh@ehtures both of these projections.

each trial one response is correct while the other is incepondence in probability matching between subjects and
rect). For the instructed stimulus, S4, the probability ofiodels.
receiving “correct” feedback for each response matches Test PhaseDuring the test phase, the uninstructed
that used in human subjects (40% for response R1 afigdel exhibits the expected Go and NoGo activity in the
60% for response R2). striatum. That is, positive Go activation is observed for
During the training phase, the proportion of instructegsponses to stimuli with a high probability of providing
stimulus choices is a function of the learning rate apeorrect” feedback, whereas greater NoGo activation is
plied in the initial trial, with higher instructed learningobserved for responses to stimuli with a low probability
rates producing more rule-like behavior. Thus, the singd providing “correct” feedback. This pattern replicates
instructed-learning trial replicates the basic behaviea those described in earlier models without a PFC/HC layer
sult seen in the training phase. The actual values of tl#sank et al., 2004; Frank et al., 2007b). Thus, our added
learning rate parameter are arbitrary. For each simulatitayer does not alter the basic striatal reinforcement learn
we use the value that provides the best qualitative fit to timg characteristics of the model.
behavioral data (see appendix for learning rates). In the “complete” instructed model, the PFC/HC
Despite exhibiting rule-governed choice, the irprojects to both the striatum and the motor cortex. Be-
structed model demonstrates some learning about the taase we can apply independent learning rates to these
contingencies over trials, as do humans. Figure 6b illysojections for the instructed trial, this model can pro-
trates that the probability of the model selecting the inluce two qualitatively different results. If we apply a rel-
structed stimulus decreases over epochs, due to the fedidely high learning rate to the weights from the PFC/HC
back provided about the true environmental contingeto-striatum in the instructed trial, then the striatum shows
cies. Go activation for the instructed stimulus even during the
Though the qualitative patterns in the uninstructd@st phase, despite having experienced negative feedback
models and uninstructed subjects are similar, the traj@& 60% of trials. This result suggests that the PFC/HC
tory of the learning curves are slightly different. Due tgains the striatum (both during the instruction trial itse
the removal of the EF criterion in the behavioral exper@nd as the instruction is reactivated during each stimulus
ment, several subjects were able to proceed to the tesfigsentation) to represent the reinforcement probagsiliti
phase before receiving adequate feedback to decipherifig@rrectly. In contrast, if the PFC/HC to motor cortex
probabilities associated with the EF pair. As mentiondtiojection experiences the instructed trial with a rezlfiv
above, this caused uninstructed subject group to remhi@ih learning rate, the striatum shows NoGo activation for
slightly below the expected 60% accuracy on this pdfte instructed stimulus. In this case the striatum leares th
at the end of training (see historical controls Figure 2&Rrrect contingencies from experience, but is overridden
Removal of subjects receiving insufficient feedback (se¥ the PFC/HC. Because there is no principled way to
Bayesian analysis in appendix) resulted in greater corf&cide how the brain differentially applies these learning
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Figure 6:a) Complete (dual projection) model performance on a reduceiigbilistic selection task involving four stimuli. When
presented with stimulus S1 (S2), response R1 (R2) is pebkitieinforced on 80% of trials. For S3 (S4), R1 (R2) is reinéal
on 60% of trials. Instructed models were “misled” in an mliinstructed trial that R1 would be correct in response &odtitical
(instructed) stimulus S4*. The instructed model shows ttpeeted matching behavior on all but the instructed stisw&sponse
mapping. Choice on the instructed stimulus is suboptim#i vespect to actual reinforcement probability, as in huswjectsb)
The instructed model, like human subjects, shows someitepaf the true probabilities over time. Over 10 epochs penénce
on the instructed stimulus drifts up to match the allocatér stimulus responses seen in human subjects. The urdtesiru
model begins somewhat below 50%. This occurs because timedtiel does not always clearly choose a specific responseiearl
training, instead producing a blend of responses (whiclvismted as incorrect). As feedback accumulates in traitfrgmodel
begins to probability match the S4 stimulus.

rates (or even if it does), we do not consider these resigtdatum. This occurs for two reasons. First, the initial in
further, but rather, explore each alternative with thelgingstructed trial produce large weight changes such that the

projection models described below. representation of instructions in PFC/HC activates the as-
sociated striatal Go response. Second, subsequent presen-
Single Projection Models tations of the instructed stimulus reactivate these siriat

h geli | hat th .Go representations, and in effect increase the effect of DA
The modeling results suggest that the representatigiss foliowing choice of instructed response, while also

of rules in the PFC/HC either bias what the striatum learﬂﬁninishing the effect of DA dips when the instructed re-
about environmental contingencies or override its aClllonse receives punishing feedback. Thus, the PFC-BG

raFe contmgency learning. To distinguish betv_veen t_heﬁﬁs model constitutes a neurally plausible instantiation
“bias” and “override” accounts, we conducted 5|mulat|orb':‘r a “confirmation bias”

using single projection models (PFC-BG and PFC-MC The PFC-MC model, in contrast, produced striatal

models respectively), and then probed for diﬁerencesailgsociations similar to those of the uninstructed model
striatal activity during the test phase.

ina th . h he i q ) Figure 7), but even more exaggerated. Here, the stria-
During the training p ase, the |"nstructe ' VEISIONS Pl learned the correct task-related contingencies, even
these models produced “behavioral” results virtually *defhough the model chose according to the instructions at

tical to that of the complete instructed model. They ea output level. Indeed, relative to the control model, the

exhib_i'Fed probabili_ty matching on ‘T"" but the inStrUCteElFC-MC model showgreaterstriatal NoGo associations
condition. On the instructed condition, both models pres, sejecting the instructed stimulus. This enhanced NoGo

duced the inaccurate, rule-governed response over theaG:ning arose because the PFC-MC projections override

curate, probabilistic response. Differences between t‘Qﬁatal associations, thereby causing the network tetele

single projection models arise, however, when probing tﬁwee instructed stimulus, and in turn to experience nega-

learned striatal activations in response to the instructed., ¢ ypack and correspondingly enhanced NoGo repre-
stimulus during the test phase. In this phase, the PRl arions. Thus whereas in the PFC-BG model, contin-
BG model showed relatively greater striatal Go activatiqpuy chojce of the instructed stimulus can further train the

for the instructed response (Figure 7). Here, the insmégfiatum to “like” the instructed stimulus, in the PFC-MC
tion representations biased the learning of the task by the



Test Phase Striatal Activation the computational functions that these brain processes are
for instructed stimulus thought to implement and provide quantitative fits to be-
havior with a minimal number of parameters (O’Doherty
1~ et al., 2004; Cohen & Ranganath, 2007; Lohrenz, Mc-
Cabe, Camerer, & Montague, 2007; Daw et al., 2006).

o] We attempt to capture and test the two hypothesized
/] % rule-governance circuits delineated by the neural network
%': /P/FJ_ simulations via modifications of a simplified Q-learning
reinforcement algorithm (Watkins & Dayan, 1992) pre-
viously applied to this probabilistic selection task (Htan
21— et al., 2007a). Because any number of abstract analytical
models might be developed to account for subject data,
I Uninstructed | we fit only models which conceptually match the “bias”
-3 [ Instructed and “override” hypotheses described by the network ac-
PEC-MC PEC-BG count above. Investigators increasingly utilize fMRI as a
Model method to constrain analytical models with biological sig-
nals (see O’Doherty, Hampton, & Kim, 2007 for review).
Our approach here is similar, though we use the plausible
Figure 7: Striatal Go and NoGo unit activation-based recefipiological circuits identified by our neural network simu-
tive fields in the test phase when presented with the ingtductations to guide the development of our analytic models.
stimulus. Here positive values indicate greater Go than NoGhgse models providing the best trial-to-trial fit to behav-

activity for selecting R1 compared to R2. Uninstructed nedegq, might help discriminate between the competing hypo-
show negative values, indicating a correct preference foo\Rr thetical mechanisms

R1 in response to the instructed stimulus, S4. Although both . . .
single projection models behaviorally chose response Bi-(c To preview the results, our simulations suggest that

sistent with the instructions but inconsistent with reisfament  Subjects continue to learn with their reinforcement sys-
probabilities), their test phase striatal activationsvskimat they tem, but that instructions amplify reinforcement experi-
learned fundamentally differently. Whereas the striatarthe ences consistent with pre-set instructions and diminish
PFC-MC model appropriately learned NoGo to the instructedinforcement experiences inconsistent with them. This
response, the PFC-BG model was biased to learn Go. model is most consistent with the PFC-BG (bias) neu-
ral model described above, in which each rule-governed
. . L . . .model choice reactivates the associated PFC rule repre-
model instruction following increasingly results in stri- . : . : .
. o sentation which biases the striatum and increments the
atal NoGo activation. Nevertheless, reactivation of tf\\/\? ight in that trial (despite conflicting reinforcement)
PFC/HC representations on subsequent instructed triaEc,g P g '
drive Hebbian learning along the direct PFC/HC to mqQs .
tor cortex pathway, further ingraining the response. Th§?andard Q-Learning
the PFC-MC model predicts that the striatum learns a As a baseline for comparison to our modified mod-
very negative association to the instructed stimulus dsls, we use a form of the Q-learning algorithm previously
spite conflicting choice behavior. altered for the probabilistic selection task (Frank et al.,
2007a). This model incorporates two learning rate param-
eters, which separately scale value updates for positive
(“correct”) and negative (“incorrect”) outcomes. These
. . . two learning rates embody our assumption that separate
Our neural network simulations examine two pote fechanisms within the BG can support Go and NoGo

tial neurobiological circuits that produce rule-governg arning. This model computes a Q-value for each stimu-
behavior in the face of conflicting probabilistic reinforcelusl. in the task in the following way:

ment, and make different predictions for future experi-
ments (see Discussion). The number of parameters in

these network models, however, prevents us from quan- N Y Y
titatively fitting models to individual trial-by-trial sject D) = Qi) +aclr(O)-Qu(t))++ar (1) Qz(t)(]l—)

behavior. In contrast, although not specifying the pre- Wh s al _ 1 terf ii ¢
cise mechanisms by which learning and choice behavior eréac |s|a earning rta € paramte e; or p05|t|_ve out-
is achieved, more abstract reinforcement learning alg%)-mes’o‘L IS a learning rate parameter for negative out-

rithms (e.g. Q-learning, temporal differences) can captd® <> andris reward set to 1 for g_ailn_s gnd Ofor losses.
(9. Q g P ) *® -values range from 0 to 1, and are initialized to .5 for all

Go - NoGo Striatal Activation
_
\
H

Q-Learning Models



stimuli, in conjunction with subjects’ initial uncertayjndf example, is

value.
No feedback occurs during the test phase, so Q-value eQATm
updates cannot occur during that phase. Instead, of all Pa(t) = QA Qp® ®3)

training parameters, those producing final (post-training e ¢ fe ¢

Q-values that best correspond to subjects’ choices in thewhere( is an inverse gain parameter controlling the
test phase are derived. This allows us to provide an é&sadency to “exploit” (choose in accordance with estab-
timate of the learning rates of @’ system in control of lished Q-values) or to “explore” and sometimes select the
behavior during the test phase, based on its learned raitimulus with the lower Q-value. Probabilities of select-

forcement history during training. ing other stimuli are computed in the same fashion.
The Q' value-updating equation is similar to that ) )
above: Bias hypothesis: Instructed Learning Model

According to the neural network simulations, rule-
overnance may work by inaccurately training the stria-
Qi(t+1) = Q;(t)+ag[r(t) —Qi(O)]++a [r(6)~Qi ()] - tgum to learn acgording tgthe instructi}(/)ns rathger than ac-
o ) ) (2) cording to the extant contingencies. As described above,

In prior simulations, it was shown that thi¢ system he pPFC-BG network model exerts this bias in two ways.

that responds to trial-to-trial feedback during the traifme jnjtial instructed learning trial inaccurately assign

ing phase likely reflects a different neural and cognitiyggp, value to the instructed response. Second, the effect
system than the)’ system which integrates probabilinf gypsequent feedback from the instructed response is in-

ties across trials, and which is needed to discriminglgsased when it is consistent with the instructions and re-
between subtle differences in these probabilities at tggfced when it is inconsistent.

o 20012, o, Jearn[tes 255 o capure hese cynanics, we mdifed th basc o
associated with refrontefl function whergeas thoge asgg—r ithm in two ways. To reflect the effects of the initial
P ’ nstructed trial, we altered the initial Q-values of the in-

ciated with integrating probabilities were assouatechw_l tructed stimuli. Instructions to choose F should produce

striatal function. The assumption is that, during the t-ralpesuItS best fit by a high initial value @, whereas in-

:cng phaste, \;Yorkln%_;rt]einotry (_:apar(]nty (t)rf1 th_e I?F? aIIO\I\é%ructions to avoid E should produce results best fit by a
or win-stay/lose-shift strategies, hypothesis testiag low initial value of Q. We therefore set the Q-value of

exploration based on uncertainty about reward structllt_r?o 1 and the Q-value of E to 0 for instructed “choose F”

Lor gac?lstlmylus ;iamt As ? r.esultt, tr;]e .bESt. f'itr']n% b%fnd “avoid E” subjects respectively. All other stimuli had
avioral learning rates to participants choices in thetrai ...\ -\ oc of 0.5 as usual.

ing phase are largely influenced by these recency effects,T he eff ¢ modulati he | ¢
even as the striatal system slowly integrates reinforcémen O capture the effects of modulating the impact o

probabilities “under the hood”. Conversely, during the: tegeedbac_k foIIowing an instruct_ed response, we altered the
phase, there is no feedback — and therefore no longer fy!€@/ning algorithm to modify value updating for the
pothesis testing, exploration, or recency effects. Fuythfstructed stm;julus r(llnstructed Learn:_r]:_g. | ”‘)l' For ZUb'
all novel stimulus pairings are presented which can orffFtS mstructe_ to ¢ oose F, we amplitied value up ates
be discriminated by comparing probabilities based on i hen instruction-following led to positive outcomes and

tegrated past experience in the task. In this case, bestrﬁguc_ed value updatehs Wheg |Instruct|0n-follc(;wmgfled tob
ting learning rates are thought to reflect the striatal intgggatwe outcomes. The model computes updates for sub-

gration of reinforcement experiences throughout trainirJSCts as.
which are then used for choice at tést.

In this basic Q model, and in our bias account, the
“softmax” logistic function computes choice. The prob-
ability of choosing stimulus A over B on any trial, for

Qit +1) = Q) + aragds + O‘a—%, (4)
I

Wherea; (1 < ay < 10) is a free parameter that

6Note that the assumption that the division between trainimgjtest ?mp“fles ga_lns and redl‘!ces losses following Ch(_)lces of
choice is binary is likely overly simplistic, and softer sb@mechanisms instructed stimulus F. This parameter creates an index of
for combining the two systems are possible (Frank et al.7a0Nev-  biased learning with values greater than one indicating an
erthel_ess, these require addltlo_n_al assumptions about wrm#e how to amplification of Q-value updates foIIowing positive out-
combine the systems, and additional parameters for doir{gemalso . ith i . d diminished
Daw, Niv, & Dayan, 2005), and empirical genetic data provitene Comes ConSIStent_ wit 'nStrUCtK_)ns’ an 'm"_“s _e up-
evidence that training and test choices are primarily imiteel by pre- dating after negative outcomes inconsistent with instruc-
frontal and striatal function, respectively.




tions. We also constrained the maximum value by

ag anday.” For subjects instructed to avoid E, we sim- e

ilarly scaled value updates such that updates consistent Pr(t) = QrM+Crp® QE(M+CE® (6)

with instructions were amplified while those that were in- ¢ ‘ Te ‘

consistent were diminished. This entailed amplification of The summation of)’'s andC'’s is based on the com-

losses, and reduction of gains, following choices of stirbined contributions of the PFC/HC and the BG to fol-

ulus E. low the instructions or the contingencies respectively. C-
Instructions may exert their effects exclusively by anyalues increase over choices and make repeated stimulus

plifying or reducing outcomes (rather than doing both, &¢lection more likely, independent of the outcomes asso-

above)’ be they gains or losses. To investigate this poﬁa.ted with that selection. ThUS, for instructed SUbjeCtS,

bility, the IL model was modified to only amplify updatesgelatively large C-values accumulate as F is chosen, fur-

(IL-A, amplify gains for subjects instructed to choose Hher increasing the probability of its selection.

and losses for subjects instructed to avoid E) and anotherTo capture the initial task instructions, the C-value of

to reduce outcomes (IL-D, diminish losses for subjects ithe F stimulus was initialized as a free parameteil( <

structed to choose F, and gains for subjects instructedtp < 5). This free parameter applies to both instructed

QFM)+CR(H)
<

choose E). groups because instructions to avoid E and to choose F
both result in F selection. C-values for all other stimuli
Override hypothesis: C-Learning Model were initialized at zero, but nevertheless accumulate and

) o are similarly integrated in the softmax choice function.
The alternative neural network model indicates that

the_ effect of instructions is to have the PFC_/HC_ dwectlgayesian Q-learning
activate motor cortical responses. By this view, the
PFC/HC receives an initial learning trial which rapidly in- We also implemented the Q-learning models de-
grains the instructed stimulus-response mapping. Expexdfibed above in a Bayesian framework (Dearden, Fried-
ence that this instruction is incorrect may reduce instruzian, & Russell, 1998; Daw et al., 2005), with multiple re-
tional control over time, as striatal NoGo associations beted motives. First, because it reflects the true Bayesian
come large enough to play a role in selection. However,pnobabilities experienced by each individual, this frame-
parallel, continued reactivation of the instructed resggorwork naturally provides an objective measure of whether
in motor cortex upon its selection can slowly drive disufficient feedback information was received to learn the
rect stimulus-response “habits”, in terms of strong syndpue statistical relationships between the training slimu
tic weights due to Hebbian learning between the stimulgiven the probabilistic reinforcement schedule. Second,
representation and the motor cortical response, which tee Bayesian framework can determine whether subjects’
come independent of BG functionality over time (Franitendency to follow instructions may reflect a strong ini-
2005). tial prior distribution over Q-values associated with the

To encapsu|ate these Stimu|us-resp0n5e Charactéﬂgtructed StimulUS, without haVing to assume that subse-
tics, we modified the Q-algorithm by introducing a variduent learning rules are “special” for the instructed stimu
able that grows with the number of times a stimulus h##. Thatis, itis in principle possible that reduced leagni
been chosen. In addition to computing standard Q-valué§m outcomes inconsistent with instructions (as in the IL

the model tracks Choice (C) values for each stimulus agodel) might be captured by the Bayesian update rule in
which the learning rate is effectively diminished when the

Ci(t +1) = Ci(t) + ac (5 initiql prior is strong enough. Simgl_ation results _shovmtha
this is not the case, and that addition of an IL-like mech-
whereac is a free parameter that increments the upnism is necessary even within the Bayesian framework
dates of C-values each time stimufus chosen. C-valuesto fit participants’ test choices. Finally, we implement a
and Q-values are then summed in “softmax” such that tBayesian version of the override model which posits that
probability of choosing F over E is subjects continue to choose according to the instructions
until they are sufficiently confident that the evidence re-

= , — ects the instructions. Such an analysis can potentially in
If o is greater than ¥/, Q-values can exceed 1.0, in which cases. . . . [
positive outcomes (with reward values of 1.0) actually leadegative icate the degree to which SUbJeCtS attained |nS|ght Into

prediction errors. The resulting instability of Q value apes is detri- the inaccuracy of the rule. We note that, unlike the mod-

mental for the optimization algorithm to find best-fittingrameters. To els above, these ana|yses are not as direcﬂy constrained by

E)rse;’sgt this, we restriai to be less than &/ for gains and My, for o -hanisms identified in our network models, but enable
us to incorporate the notion that participants may repre-
sent different degrees of “belief”.




Basic Bayesian Modelln Bayesian learning, ratherply softmax in the usual way, using the modes of the den-
than representing a single Q-value for each stimulus, ity function as the best estimate of each Q-value, such
assumption is that subjects represent a distribution of Itleat the probability of choosing A in an AB trial is
liefs about the Q-value for each stimulus (see Kruschke,

in press for a comparison between classical and Bayesian e%“”
approaches to learning). Because the stimulus outcomes Pa(t) = ode A (8) mode 5 () (12)
in the probabilistic selection task are characterized iy a b e < te ¢

nomial distribution, we represented beliefs using the beta where( is an inverse gain parameter controlling the
distributior?, characterized by hyperparameterand3. tendency to to choose in accordance with established
The probability density function of the beta distributien imodal values. Probabilities of selecting other stimuli are
as follows: computed in the same fashion.

o1 61 At v =1 (i.e., no forgetting), this model computes the
1“’ (1-2) (7) optimal Bayesian probability distributions for each sub-
fo w11 —u)B-1du ject’s set of training data. Comparison of the modes of

final distributions for any stimulus pair should reveal the

. where the mtegral in the dgno_mmatons the beta funt?ije probabilistic relationship between the stimuli based
tion B(«, ) and is a normalization factor that ensurege

that the area under the density function is always 1, T n actual feedback delivered to each participant. If this

) qationship of final modes does not reflect the intended
o andﬁ paramete_rs are update“d after :aach fumome[;?r%babilistic relationship (i.e, EF has a 60:40 ratio), we
adding to the running counts of cor_rect and NCOITECt: 5 clude that the subject did not receive sufficient feed-
feedback to the priotv and 3 respectively. The defining

A fth terior distribution f h stimul back to discriminate between the stimuli. Of the 32 sub-
parameters ot the posterior distrioution for each stimel L;fe ts included in the analysis, two from the each group

are calcglatted "?‘“er.ea‘jh outcomte tustlng Bayes rule, w b tructed and uninstructed) had final modes for the F
given a beta prior Simply amounts to- stimulus that were higher than those for the E stimulus
(see appendix for representative posterior estimates). As

[z, 8) =

a;i(t+1) = ai(t) + pos (8) discussed above, exclusion of these subjects, or even of
subjects whose F distributions were not at least one stan-
Bi(t + 1) = Bi(t) + neg (9) dard deviation below those of stimulus E, did not alter the

effect of instructions.

wherepos = 1 during positive feedback, and 0 during  Bayesian “Strong Prior” Model We altered the initial
negative feedback, and vice-versasey. In addition, the prior Q distributions for instructed stimuli to test the pos
running counts are decayed multiplicatively on each trigibility that a model with no “special” learning rules could
by a free parameter (1 > v > 0). This decay parameteraccount for the observed data. In this model, for subjects
represents the subject’s potential assumption that the @igtructed to choose F, the initial parameter is allowed
tributions of stimulus outcomes might change with timg vary for the prior F distribution. High initiak values,
(without such decay, the distributions become quite navith 3 held to 1 produce distributions with modes close
row, or “confident”, after relatively few trials; Daw et al. o 1, reflecting subjects’ belief that F is correct. Simijarl
2005). we allowedg to vary freely for the prior E distributions

At each trial, the mode and variance of the currefar subjects instructed to avoid E. Highvalues witha
beta distributions for each stimuldsare computed ana-held to 1 produce distributions with modes around 0, re-

lytically: flecting subjects’ belief that E is incorrect. Free initial
hyperparameters were bound between .01 and 1000. Both
mode; = a; —1 (10) ¢ and~ were also free to vary and were bound as above.
a; + B —2 Bayesian IL Model To provide a strictly comparable
comparison for the “strong prior” model, we developed
o2 = af (11) an alternative Bayesian bias model. In this model, we al-
Co(a+p)P(a+B+1) lowed the initial hyperparametessand 3 to vary for in-

Once the beta distributions are calculated, we then gucted stimuli exactly as above. The defining parameters
of the posterior distribution for each uninstructed stiosul

i were also calculated as described above. Additionally,
8The use of a beta distribution is motivated by the fact thédritns for instructed trials, the parameteris used to differen-
the conjugate prior to the binomial distribution, such thaplication of . A . . .
Bayes rule to update the parameters of the prior distribugsults in a t'a”y scale consistent and inconsistent outcomes as in the
posterior distribution that is also itself a beta distribnt




basic (non-Bayesian) IL mod&linstructed posterior dis-  wheres (20 > ¢ > 0) represents the degree of confi-
tributions for subjects told to choose F were computed dence, in terms of the number of standard deviations that
the mode of the F distribution has to be below 0.5, before
ap(t+1) = ap(t) + wpos (13) @ choice inconsistent with the instructions is likely to oc-
cur. The probability of continuing to choose in accordance
1 with the instructions is then simplr(t) = 1 — P(E).
Br(t+1) = Br(t) + —neg (14) Note that this modification of the choice rule does not re-
w sult in a persistent policy switch, but rather computes the
Wherel00 > w > 1, and modal probability estimategikelihood that the subject will choose in accordance with
are selected among via the softmax choice rule descriled instructions based on an estimate of their accuracy at
above. For subjects instructed to avoid E, the modifiedch trial. For uninstructed stimulus pairs, the standard
update termsw and1/w, are swapped across hyperpasoftmax” rule is retained. This model was motivated by
rameters such that outcomes are modified in accordaaggmilar implementation of reversal learning (but without
with the instructions that E should be avoided. the confidence metric, as it did not involve prior instruc-
Bayesian Override Model and Individual Differencegions), by Hampton, Bossaerts, and O’Doherty (2006).
As discussed above, visual inspection of subject learning Once sufficient evidence as to the inaccuracy of the
curves for EF trials in training suggested interesting iinstructions is accumulated, this model predicts a shift in
dividual differences. While some subjects gradually ihoice strategy, such that there is a higher probability of
creased their allocation of responses to E over F, others aaking a choice inconsistent with instructions. Thus sub-
peared to show “insight” into the fact that the instructiorjscts showing learning trajectories in which they initjall
were incorrect, and switched from choosing F to choasrake instruction-consistent choices and then at some
ing E. A Bayesian framework could in principle providgoint are more likely to abandon the instructions (possi-
a prescriptive account for when one might become mask reflecting “insight”) may be well fit by this model.
likely to abandon the instructions. We fit subject data with
a modified version of the basic Bayesian model, WhiGZD-Learning Results
is closer in spirit to the neural override model. Here, ) o ) ]
standard (Bayesian) probabilistic reinforcement legnin e are primarily interested in model fits to the test
proceeds as usual “under the hood”, similar to the Ové),l;ase choices in which all novel pairings are presentgd
ride model in which the striatum computes reinforcemeffthout feedback. Because the instructed stimulus is
probabilities for the instructed stimulus without being-di Paired with other stimuli of different probabilities, par-
torted by the instructions. Nevertheless, the choice muldifiPants relative choice of the instructed stimulus as fit
such that the instructed stimulus is highly likely to be ch@Y Softmax provides an objective measure of the effec-
sen until the reinforcement system is sufficiently “conffive value learned as a result of a combination of actual
dent” that the F stimulus is actually incorrect. This modéginforcement and instructions. Nevertheless, we report
has a parameter for “confidence” and can therefore H@del fits for both training and test phases.
conservative: choices contrary to the instructions occur Bias vs. OverrideOn the whole, our modified mod-
if the mode of the F distribution i standard deviationséels produced a marginally better fit in the training phase,
below 0.5, where represents the required degree of coand a substantially better fit in the test phase, compared to
fidence. Estimated probability distributions were initiastandard Q-learning models.
ized and updated as above. For choices involving the in- These results permit several conclusions. First, com-
structed stimulus, we altered the choice rule such that {fwred to the IL (bias) model, the QC (override) model
probability that the instruction-inconsistent stimulus) ( yielded a poorer fit of subjects’ choice data in both the
is selected (i.e., the probability that the instructions atraining and test phases. This lends greater preliminary
determined to be inaccurate and should be abandoned3uisport to the IL model, which initializes Q-values ac-

computed as: cording to the instructions and then modulates updating
of those values over experience to be skewed based on in-
e structions. This suggests that instructions initially e
Pp(t) = E emodem)zwap(m (15) by endowing a stimulus with value, and then by changing

stimulus values to confirm rather than reject the instruc-
tions.
) . - . . - . ) )

For conS|stency_W|th our basic Q-model_s which utilized safea A more specific analysis of IL model variants suggests
learning rates for gains and losses, we also implementetrasyrical h h d fit i d d by di . f
decay parametersyg and~y, in another version of this model. The_t att e goo _'t 1S prp uce i y discounting o OUthmes
results of this model, BL _LG, are reported in Table 1 inconsistent with the instructions more than by amplifica-

tion of consistent outcomes. In the IL-A model, we am-




Model Params| AIC_Trn | AIC_Tst | Trn_pR* | TstpR® | LLE_Trn | LLE_Tst
LG_Con 3 75.88 94.87 0.16 0.288 -34.94 -44.44
LG 3 71.34 64.59 0.214 0.296 -32.67 -29.29
IL 4 72.07 58.56 0.23 0.392 -32.04 -25.28
IL-A 4 73.26 64.33 0.215 0.323 -32.63 -28.16
IL-D 4 71.95 58.82 0.231 0.389 -31.97 -25.41
QC 5 73.6 61.52 0.235 0.381 -31.8 -25.76
B_Con 2 73.24 104.66 0.158 0.193 -34.62 -50.33
B 2 79.04 71.36 0.098 0.19 -37.52 -33.68
B_OR 3 74.78 73.46 0.173 0.189 -34.39 -33.73
B_SP 3 75.06 69.96 0.17 0.23 -34.53 -31.98
B_IL 4 77.11 65.29 0.169 0.311 -34.56 -28.65
B_IL_LG 5 76.34 63.3 0.202 0.359 -33.17 -26.65

Table 1:Model fits for training (Trn) and test (Tst) as indicated byai#e’s information criterion (AIC) (Akaike, 1974), Psewrfo
(Camerer & Ho, 1999), and log likelihood estimate (LLE). kiég PseudoRand LLE values are indicative of goodness of fit.
AIC values penalize fits for models with more parameters,sandller values indicate a better fit. LGon: LG model for control
(uninstructed) subjects. LG: Gain/Loss model for instedcsubjects. IL: instructed learning model in which initialues of
QE and QF reflect instructions and value updates for ingtclistimulus selections are amplified or reduced consistéhttihe
instructions. IL-A: value updates consistent with instimies amplified only. IL-D: value updates inconsistent wiitktructions
diminished only. QC: Q-values and C-values are added immsoft B.con: basic Bayesian model for uninstructed subjects. B:
basic Bayesian model. .BP: Bayesian strong prior model with free parameter indfiad prior of instructed stimulus BR:
Bayesian override model which predicts instruction-cstasit choices until it is sufficiently certain that they amedrrect. BIL:
Bayesian instructed learning model with strong prior ancdaitional free parameter scaling the degree to which outsofrom
the instructed stimulus are distorted (as in basic ILJLBLG: Same as BL with the addition of separate decay parameters for
gain and loss (as in LG).

plified the impact of gains that occurred after followingight” Learning The Bayesian override model provided
instructions for subjects told to choose F and amplifiédferior fits to subject data compared to the neurally-
losses following E choices for subjects told to avoid E. Imotivated Q models. Nevertheless, this model substan-
the IL-D model, we diminished the impact of losses fotially improved training phase results compared to the ba-
lowing F choices for subjects told to choose F, and dimisic Bayesian model (Table 1). The improved fit is a prod-
ished the impact of gains that occurred after violating tluet of both the capacity to choose according to the in-
instructions for subjects told to avoid E. The IL-D modedtructions during training, and also to shift from this ten-
provided a better fit to both the training and test phasegdency. Interestingly, the best fit subjects were those with
Bayesian “Strong Prior” and IL modelsThe “strong learning curves most indicative of “insight” learning (see
prior” model provided improved fits of subject data con@Ppendix for representative curves). This override model
pared to the basic Bayesian model. As expected, f@go fit training data marginally better than the Bayesian
initial hyperparameters were best fit by high values. FBias models.
choose-F subjects mearr 286.5 (sd = 441.5), for avoid- ~ Though modification of the choice rule improved
E subjects meap = 522.9 (462.2). However, this modemodel fit in training, it also reduced fit in the test phase
proved to be inferior to the IL models (for both train andompared to the basic Bayesian model. This result reflects
test compared with the non-Bayesian IL model, and ftre conceptual difficulty such an account has in explain-
test compared with the Bayesian IL model). The Bayesiarg the reemergence of instruction-following. If subjects
IL model not only included a strong prior for instructedhave come to the conclusion that the instructions are in-
stimuli, but also scaled the value updates to “confirm” tlaecurate and adjust their behavior in opposition to those
bias of the instructions. While this model fit the trainingnstructions, they should continue to do so at test. But
phase data slightly less well than the “strong prior” modddgcause subjects tended to choose F even over stimuli
it provided a substantially better fit to the test phase. Birat had much higher probabilities of positive feedback,
cause the latter phase probes the values actually intelgréitese findings are better accommodated by the bias mod-
as a function of training, this result supports the claigls, in which the system computing reinforcement proba-
that “special” (confirmation-bias) learning rules do indedbilities is inaccurately trained by that representingrinst
drive the rule governance effect, a result consistent acrtiens, such that the resulting final instructed probabitity
our Bayesian and non-Bayesian frameworks. skewed.

Bayesian Override and Individual Differences in “In-  Because of our small sample size and the lack of the-



oretical biological constraints, strong conclusions abatells continued to represent the extant reward probabili-
individual differences cannot be drawn. Though sonties rather than the choice actually executed in that trial
subjects shifted away from the instructed response in {isee supplement of Samejima et al. (2005)) — suggest-
training phase more quickly than others, the cause of ting that extrastriatal structures control exploratorydeh
difference is unclear. Future work should seek to invest. Notably, in humans, an explicit decision to “explore”
tigate these differences at the behavioral and biologigala probabilistic reinforcement learning environment is
levels. associated with anterior prefrontal activation, desgite t
fact that the striatum faithfully represented current nelva
probabilities (Daw et al., 2006).

A computational account of BG and PFC by Daw et al.
. 2005) suggests that each system produces different pre-
mechanisms of rules . . ; .
: . . dictions about optimal behavior. In this framework, of the
governance or instruction following, and how the ! . -
wo systems, that with the more certain prediction con-

interact with reinforcement learning, remain unde{— : .
. ) rols behavior. The assumption that each system makes
investigated. Our results show that such research ma

; o o | a'ependent predictions is more consistent with our PFC-
permit not only description pf_the n_eural underpinnings C model in which the striatum makes its own predic-
LUI:i'gg,{vgalagﬁi’tr?;{’ raéplgmegci?;ﬁﬁgsvnﬁg;%? S;/s;ferﬂ%sns and the ultimate choice is dictated by motor cortex,

9 ' y sp . 95y qupending on the relative strength of basal ganglia or pre-
cooperate or compete for control of behavior.

. i frontal projections. The Daw et al. (2005) model is per-
Our network simulations explored two routes b}ang most closely related to the Bayesian version of our

which instructions may exert their effects. The first POgyerride model, in which the degree of certainty of the re-

sibility, as explored in the PFC-BG model, is that innorcement system's estimations is used as an index to
structions bias the way the experience-based BG sysigR}ease the odds of abandoning the instructions. In con-
learns directly. In this case, instructions cause the BGst pecause the PEC-BG model suggests that the PFC
system to develop representations equivalent to those Rigsiem directly influences BG representations, and trains

duced by environmental contingencies substantially @fem to be skewed, such a clear separation at the neural
vergent from those actually present in the environmept,o| would not be expected.

These divergent representations develop through *top- Neither our behavioral experiment nor our network

down PFC.:/HC ”‘?"”'”9 signals. Tr_us accour_lt ICJreOIICgslmulations clearly distinguish between the PFC-BG
that the striatum will represent a confirmatory bias to Iea{gias) and PEC-MC (override) accounts. Abstract mathe-
what is dictated by higher order structures. )

> ) matical models fit to individual subject data suggest the
The second possibility, as explored in the PFC-Mfia¢ hypothesis (IL model) may be more applicable in

model, is that instructions override appropriate trialanihis context. Consistent findings were very recently re-
error learning in the striatum at the level of decision Ou,S'orted by Biele, Rieskamp, and Gonzalez (in press), who
put. In this case, trle PFC/HC ccintrols behavior evednored the effects of social “advice” (from one partici-
though the striatum “knows better.” Some neurophygiant g another) on subsequent performance in a gambling
ological data lend support to this idea. Pasupathy apdy. the pest-fitting model was conceptually similar to
Miller (2005), who recorded from monkey BG and PFGy - || model. Thus although these authors take a social
demonstrated that that, although striatal cells indidage t, 4 cognitive approach, the effect they explore is simi-

correct response early in training, the behavior did n@l; onq Jikely shares similar neural substrates to those we
The correct response appeared only when PFC cells #Gpose here.

indicated the correct response. Clearly, no instructions Specific analysis of the mechanisms of our IL model
appeared this study. Nevertheless, the results indicate thuggest that rules control behavior by dismissing out-
behavior may not always be contingent on the represenﬁgfnes that are inconsistent with the rule (as indicated
Fic_ms of the BG reinforcementlearning system, even WhB)r) the superior fit of the IL-D model). This mechanism
Itis cprrect. . o ) ‘maps on to the neural model where the impact of rein-
Similarly, in a probabilistic reward-learning task, strigyrcement inconsistent with instructions is reduced, give
atal cells were shown to encode Q-values (both positiyg, simultaneous top-down bias of the PEC/HC layer onto
and negative, consistent with Go and NoGo neuronal pRg striatum. This bias drives Hebbian learning toward the
ulations Samejima, Ueda, Doya, & Kimura, 2005). Th@gircted response, and minimizes the effects of DA error
degree of activation of the associated Q-value striatal N@iyna|s that would drive learning in the opposite direction
rons predicted choice behavior. Critically, when the ani- Though the bias hypothesis is supported by the sim-

mal chose to "explore” by selecting the prObabi"Stica”MIaﬂons we described, in absence of further data, we are
less valuable option, the vast majority of striatal Q-value ’ '

Discussion

The computational neural



reluctant to reject the override hypothesis outright. WhiBerns, & Montague, 2003; O’Doherty, Dayan, Friston,
both the QC model and Bayesian override models did pi@ritchley, & Dolan, 2003). Parametric estimation of
duce overall inferior fits to subject choices, it remains-poBG response to each of the stimuli could indicate if the
sible that the essence of this type of model is correct, dRBC/HC is training this system or if it is learning indepen-
may accurately reflect a valid cognitive strategy used bgntly. The PFC-BG model predicts greater BOLD acti-
some participants. Future work will seek to accept or reation for the instructed stimulus F than its statistically
ject this possibility by correlating model parameters witsuperior pair E. The PFC-MC model predicts that, due
biological signals, and examining the degree of model fit more choice and associated NoGo learning, the striatal
to functional connectivity between sensory and premotBOLD response will treat the instructed stimulus F as if

cortical regions. its reward value were quite low, even lower than in the
uninstructed case (see Figure 7 and results above).
Model Predictions Another possibility is that there are individual differ-

Though the simulations presented here do not provi.(a'éce.s in the circuits medl_atlrjg rule governance. Recent
Imaging work documents individual differences in learn-

conclusive answers, they do provide testable predlctlolr{1_|sg (Schonberg, Daw, Joel, & O'Doherty, 2007), but this

Given the finite working memory capacity of the PFC, | proach remains underused. Given that multiple pro-

may be possible to take this system “offline” and pro : .
the striatum for responses. If the PFC is responsible #Scl;tmns from PFC and HC to striatum and to motor out-

overriding accurate striatal encoding of reward probabiﬁJUtS exist, itis plausible that individuals differ in theure

ties, then taxing the PFC with a dual task may prevent tﬁ% and cognitive strateglt_as used to .fOHOW task mstru_c-
tions. Hence, those subjects best fit by the C-learning

override from taking place. In such a case, instructed sub- ) . L
gp odel might reveal greater functional connectivity be-

jects would show rule-governed responding in a training ,
phase identical to that described above. By adding sec%\?ﬁen PFC and pr emotor cortex, Where"?‘s those bettgr fit
he IL model might show greater functional connectiv-

task during the test phase, however, the PFC should be ih: :
able to exertits influence and the contingencies learned >})etween PF_C and striatum.

the striatum should dictate instructed subjects’ choittes. | "€ behavioral data presented here demonstrate that,
is, of course, possible that contributions from HC in a@S training progresses, some people begin to respond to
dition to the PFC are necessary to override contingencfédant probabilistic contingencies rather than mislegdin
learned by the striatum. In light of evidence that the HEStructions.  Given this, it is striking that a strong ten-
and BG systems often compete with each other for beh&@ncy to act according toinaccurate rules reemerges in the
ioral control, such that inactivation of one system leads 5t Phase (where subjects instructed to choose F, for ex-
enhanced performance in tasks that depend on the of§8p!e, chose it not only over E, with which it was paired
(Atallah et al., 2004; Poldrack & Packard, 2003; FrankU"ing the training phase, but over A and C, stimuli that
OReilly, & Curran, 2006), it should be possible to reduc@/Piects accurately learned had high probabilities of be-
the impact of this system during the test phase. If, apgc_orrect). One mec.hamstlc interpretation is that dyrin
the other hand, the PFC/HC trains the BG, then both s{&@Ining, the PFC/HC inaccurately trains the BG, but that

tems should reflect the rule-governed contingencies, aitin® portion of the PFC (perhaps orbital prefrontal cor-
the introduction of multiple tasks will not alter choices if€X; Frank & Claus, 2006) with working memory capacity
the test phase. remains sensitive to recent outcomes begins to dominate

Further, a priming paradigm, in which a particulatlramlng phase behavior.
stimulus is presented subliminally, followed by a target
response, might reveal striatal “weights” in the absence Conclusion
of PFC/HC influence. If the target response is consis-
tent with the probabilistic reward value of the primed re- oyur work builds on lines of research from behav-
sponse, we expect enhanced response latencies, wheggagnalysis, cognitive psychology and cognitive neuro-
if it is inconsistent we expect diminished response lacjence in attempt to identify and describe the neural cor-
tencies. Given that Parkinson’s disease affects this kiféiates of ru|e_governance_ Though Computationa| ap-
of priming, revealing behaviorally silent striatal assnci proaches to cognitive neuroscience continue to prolifer-
tions, such an approach appears feasible (Seiss & Pragfg; few have attended to the mechanisms underlying rule-
stra, 2004). governed behavior. Increasing evidence suggests mul-
Neuroimaging may also help to differentiate thes#le brain systems fulfill multiple cognitive roles (San-
models. Several studies have shown parametric BG fey, Rilling, Aronson, Nystrom, & Cohen, 2003; Mc-
sponses to stimuli in proportion to their reward valu€lure, Laibson, Loewenstein, & Cohen, 2004; see San-
(e.g., Delgado, Locke, Stenger, & Fiez, 2003; McCluréy, Loewenstein, McClure, & Cohen, 2006 for review).



Instructed | Proportion

Model L-rate correct | Reported LLE = log(H P y) (16)
Complete_con n/a 0.64 t

Complete 0.03 0.52 wheret is trial number and*, ¢ denotes the subjects
Complete 0.05 0.4 X choice on trialt. For each subject, the best fit parame-
Complete 0.1 0.26 ters are those associated with the maximum LLE value
PFC-MC_con wa 0.56 and are, by definition, the most predictive of the subject’s
PFC-MC 0.01 0.29 X

sequence of responses in the probabilistic task.

PFC-MC 0.05 0.2 .
PEC-MC 0.15 0.6 The pseudoR measure compares the improvement
PFC-BG con wa 0.7 in LLE gained by the model compared to a model that
PFC-BG 0.1 D..53 choose randomly (p=0.5 for each trial).
PFC-BG 0.3 0.37 X

LLE —
PFC-BG 0.5 0.23 PseudoR* = % (17)

wherer is the LLE for the random model.

Figure 8:The effect of different learning rates for the instructed We also computed the AIC index, which penalizes
trial on each network model. For each model type we report : .

the results for the learning rate that provided the best fitavh ﬁgodels with more free parameters:

from human subjects. Proportion correct is the amount oétim

the model chose according to the actual contingencies (60% AIC = =2(LLE) + 2k (18)

for the critical stimulus), rather than the instructionsiglier
learning rates in instructed trials generally produce nrate-
following and less accurate responding.

Wherek is the number of free parameters. Lower AIC
values indicate a better fit. Because of the criteria applied
to the training phase, some subjects experienced more
training blocks than others. As a result, LLEs for subjects
How these systems cooperate and compete for controlwfo took longer to reach training criteria are inappropri-
behavior remains largely unknown. Our computationately high. To control for this we divided the training LLE
investigations into this question generate a number fof each subject by the number of training blocks needed
testable predictions. Future work will test these predig reach criteria.
tions, and inform future modeling efforts. To test the validity of our model assumptions specific
to the instructed stimulus, we ran control models by se-
rially applying each modified Q-algorithm to each of the
uninstructed stimuli, retaining the standard Q-algorithm
N Kk Model L ina R for the instructed stimulus. These control models indi-

etwor odel Learning Rates cated that improved fits of the modified Q-models were

Instructions were simulated in the network models byot produced by arbitrarily adding parameters, but rather,
presenting a single trial in which the instructed (inaccteflected computation induced by the experimental ma-
rate) response was clamped to the output layer. The led¥ipulation.
ing rate along projections from the PFC/HC layer was el-
evated for this trial, then reduced to the learning rate used
throughout the network (.001). Figure 8 shows results
produced using different learning rates for the instructed
trial.

Appendix

Q-learning

Best fitting parameters in all models were derived us-
ing the MATLAB fmincon function, implementing the
Simplex method (Nelder & Mead, 1965) using multiple
starting locations by maximizing the log likelihood of the
data under the model on a trial-to-trial basis for each sub-
ject separately.

LLEs for each subject were computed as
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Accuracy data for EF trials, subject: 13. Accuracy data for EF trials, subject: 7.
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Figure 9:Bayesian override model testing the possibility that stisjevould abruptly abandon the rule upon accumulating suf-
ficient evidence. Though the model fit the test data poorlymamed to other models, the training data produced a good lig. T
diversity of fits in the training phase indicate individuéferences. Data here smoothed over 5 point moving avei@dgeubjects

fit poorly by this model appeared to gradually shift from céiog according to instructions to choosing according tdiogencies
(this subject: pseudo®R= 0.03).b) Subjects best fit by this model also showed a learning curees imdicative of “insight.” (this
subject: pseudo-R=0.21)
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Figure 10: Plots of representative posterior estimated distribstiftor E and F stimuli. The basic Bayesian model computes
optimally inferred probability distributions based on ividual subject data. This model revealed that 4 subject:di receive
sufficient evidence to discriminate between the E and F stirmuTypical subject discriminated the relationship of the BEfatus
pair, E being more reliably correct thant}.One of four subjects who were unable to infer the correctimiahip of E and F based
on the probabilistic feedback received.



References Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-
based competition between prefrontal and dorsolateral
Akaike, H. (1974). A new look at the statistical mode striatal systems for behavioral contrdat Neurosci
identification. IEEE Transaction on Automatic Con- 8(12), 1704-1711.
trol, 19, 716-723. Daw, N. D., O’'Doherty, J. P., Dayan, P., Seymour, B., &
Allen, S. W., & Brooks, L. R. (1991). Specializing the Dolan, R. J. (2006). Cortical substrates for exploratory
operation of an explicit ruleJournal of Experimental  decisions in humandNature 441(7095), 876-879.
Psychology: Generall2q(1), 3-19. Dearden, R., Friedman, N., & Russell, S. (1998).
Ashby, F. G., Alfonso-Reese, L. A., Turken, A. U., & Wal- Bayesian g-learning?roceedings of the 15th National
dron, E. M. (1998). A neuropsychological theory of Conference on Atrtificial Intelligence (AAAI)
multiple systems in category learningsychological Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez,
Review 1053), 442-481. J. A. (2003). Dorsal striatum responses to reward and
Atallah, H. E., Frank, M. J., & O'Reilly, R. C. (2004). punishment: Effects of valence and magnitude manip-
Hippocampus cortex and basal ganglia: insights from ulations. Cognitive, Affective, and Behavioral Neuro-
computational models of complementary learning sys- science3, 27-38.

tems. Neurobiology of Learning and Memar82(3), pyrstewitz, D., Seamans, J. K., & Sejnowski, T. J. (2000).

253-267. Neurocomputational models of working memoNa-
Baum, W. M. (2004). Understanding behaviorism: Be- ture Neuroscienge3 supp 1184-1191.
havior, culture, and evolutianJohn Wiley & Sons.  Estes, W. K. (1950). Effects of competing reactions on

Biele, G., Rieskamp, J., & Gonzalez, R. (in press). Com- the conditioning curve for bar pressingpurnal of Ex-
putational models for the combination of advice and perimental Psychology200-205.

individual learning.Cogpnitive Science Filoteo, J. V., Maddox, W. T., Simmons, A. N., Ing, A. D.,
Braver, T. S., & Cohen, J. D. (2000). On the control Cagigas, X. E., Matthews, S., & Paulus, M. (2005).

of control: The role of dopamine in regulating pre- Cortical and subcortical brain regions involved in rule-

frontal function and working memory. In S. Monsell, based category learnindleuroreport 16, 111-115.

&J._Driver (Eds.),Control of cognitive processes: AtErank, M. J. (2005). Dynamic dopamine modulation
tention and performance XVIlpp. 713-737). Cam- iy the pasal ganglia: A neurocomputational account
bridge, MA: MIT Press. of cognitive deficits in medicated and non-medicated

Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Ex- ParkinsonismJournal of Cognitive Neuroscience?,
plaining the many varieties of working memory varia- 51-72.

tion: Dual mechanisms of cognitive control. In A. Rgrank, M. J. (2006). Hold your horses: A dynamic com-
Conway, C. Jarrold, M. J. Kane, A. Miyake, & J.  pytational role for the subthalamic nucleus in decision
Towse (Eds.)Variation in working memorypp. 76— making. Neural Networks19, 1120—1136.

106). N : i i . .
)- New York, NY. Oxforq Unlversny.Press Frank, M. J., & Claus, E. D. (2006). Anatomy of a deci-
Bunge, S. A., Kahn, I., Wallis, J. D., Miller, E. K., &  gjon: striato-orbitofrontal interactions in reinforcente

Wagner, A. D. (2003). Neural circuits subserving the learning, decision making, and revers&isychol Rey
retrieval and maintenance of abstract ruldsurnal of 1132), 300-326.

Neurophysiologyd0, 3419-3428. Frank, M. J., Loughry, B., & O'Reilly, R. C. (2001). Inter-
Bunge, S. A., & Souza, M. J. (2008)eural representa-  actions between the frontal cortex and basal ganglia in

tions used to specify action€hap. Neural representa- working memory: A computational modeCognitive,

tions used to specify actions. Oxford University Press. afective, and Behavioral Neurosciende137—160.

Camerer, C., & Ho, T.-H. (1999). Experienced-weightgtlank M. J., Moustafa, A. A., Haughey, H., Curran, T.,
attraction learning in normal form gameEconomet- g Hytchison, K. (2007a). Genetic triple dissociation
rica, 67, 827-874. reveals multiple roles for dopamine in reinforcement

Cohen, M. X., & Ranganath, C. (2007). Reinforcement learning.Proceedings of the National Academy of Sci-
learning signals predict future decisiond.Neurosgi ences104 16311-16316.

27(2), 371-378. Frank, M. J., & O'Reilly, R. C. (2006). A mechanistic

Cools, R., Altamirano, L., & D'Esposito, M. (2006). Re- account of striatal dopamine function in human cogni-
versal learning in parkinson’s disease depends on medtion: Psychopharmacological studies with cabergoline
ication status and outcome valenbiuropsychologia  and haloperidol.Behavioral Neuroscien¢é.20, 497—
44,1663-1673. 517.



Frank, M. J., OReilly, R. C., & Curran, T. (2006). When In R. Miller, & J. R. Wickens (Eds.)Conceptual ad-
memory fails, intuition reigns: Midazolam enhances vances in brain research: Brain dynamics and the stri-
implicit inference in humansPsychological Sciengce  atal complex(pp. 209-36). Harwood Academic Pub-
17, 700-707. lishers.

Frank, M. J., Samanta, J., Moustafa, A. A., & Shermalkahneman, D. (2003). A perspective on judgment and
S. J. (2007b). Hold your horses: Impulsivity, deep choice: mapping bounded rationalityAm Psychal
brain stimulation and medication in parkinsonis8ci- 58(9), 697-720.
ence 318 1309-1312. Kaufman, A., Baron, A., & Kopp, R. (1966). Some ef-

Frank, M. J., Santamaria, A., O'Reilly, R. C., & Will- fects of instructions on human operant behavi@sy-
cutt, E. (2007c). Testing computational models of chonomic Monograph Supplemerits243-250.
dopamine and noradrenaline dysfunction in attentigflein T. A., Neumann, J., Reuter, M., Hennig, J., von
deficit/hyperactivity disordeNeuropsychopharmacol- - cramon, D. V., & Ullsperger, M. (2007). Genetically
ogy, 32, 1583-1599. determined differences in learning from errorSci-

Frank, M. J., Seeberger, L. C., & O'Reilly, R. C. (2004). ence 3185856), 1642-1645.

By carrot or by stick: Cognitive reinforcementlearningryschke, J. K. (in press). Bayesian approaches to as-
in ParkinsonismScience306, 1940-3. sociative learning: From passive to active learning.

Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error- Learning and Behavior
related negativity predicts reinforcement learning angy, B., & Glimcher, P. W. (2005). Dynamic response-by-
conflict biasesNeuron 47, 495-501. response models of matching behavior in rhesus mon-

Galizio, M. (1979). Contingency-shaped and rule- keys.J Exp Anal Beha84(3), 555-579.
governed behavior: instructional control of human lo$shrenz, T., McCabe, K., Camerer, C. F., & Montague,
avoidanceJ Exp Anal Behaw1(1), 53-70. P. R. (2007). Neural signature of fictive learning sig-

Goto, Y., & Grace, A. A. (2007). The dopamine system nals in a sequential investment tasRroc Natl Acad
and the pathophysiology of schizophrenia: A basic sci- Sci U S A104(22), 9493-9498.
ence perspectivént Rev Neurobigl78C, 41-68. McClure, S. M., Berns, G. S., & Montague, P. R. (2003).

Graybiel, A. M. (1998). The basal ganglia and chunking Temporal prediction errors in a passive learning task
of action repertoiresNeurobiol Learn Mem70(1-2),  activate human striatunNeuron 38, 339-346.

119-136. McClure, S. M., Laibson, D. I., Loewenstein, G., & Co-

Hampton, A. N., Bossaerts, P., & O'Doherty, J. P. (2006). hen, J. D. (2004). Separate neural systems value im-
The role of the ventromedial prefrontal cortex in ab- mediate and delayed rewardscience306, 503-7.
stract state-based inference during decision makinghmller, E. K., & Cohen, J. D. (2001). An integrative the-
humans.J Neurosci26(32), 8360-8367. ory of prefrontal cortex function.Annual Review of

Hayes, S. (Ed.). (1989Rule-governed behavior: Cogni- Neuroscience24, 167-202.
tion, contingencies, and instructional contrd?lenum Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A
Press. framework for mesencephalic dopamine systems based

Hayes, S. C. (1993). Rule governance: Basic behavioraPn predictive Hebbian learning.Journal of Neuro-
research and applied implicationSurrent Directions ~ Sciencel16, 1936-1947.
in Psychological Scien¢@, 193-197. Neal, A., Hesketh, B., & Andrews, S. (1995). Instance-

Hayes, S. C., Brownstein, A. J., Zettle, R. D., Rosenfarb, Pased categorization: automatic versus intentional
l., & Korn, Z. (1986). Rule-governed behavior and sen- forms of retrieval Mem Cognif23(2), 227-242.
sitivity to changing consequences of respondihBxp Nelder, J. A., & Mead, R. (1965). A simplex method for
Anal Behay45(3), 237-256. function minimizationComputer Journal7, 308-313.

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004)Nishi, A., Snyder, G. L., & Greengard, P. (1997). Bidi-
Decisions from experience and the effect of rare eventsrectional regulation of DARPP-32 phosphorylation by
in risky choice.Psychol Scil15(8), 534-539. dopamine.Journal of Neurosciengd 7, 8147-8155.

Joel, D., & Weiner, |. (1999). Striatal contention scheduNoelle, D. C., & Cottrell, G. W. (1995). A connectionist
ing and the split circuit scheme of basal ganglia- model of instruction following. In J. D. Moore, & J. F.
thalamocortical circuitry: From anatomy to behaviour. Lehman (Eds.)Proceedings of the 17th Annual Con-

ference of the Cognitive Science Soc{pty. 369-374).
Mahwah, NJ: Lawrence Erlbaum.



Noelle, D. C., & Cottrell, G. W. (1996). In search of articRougier, N. P., Noelle, D., Braver, T. S., Cohen, J. D.,
ulated attractors. In G. W. Cottrell (EdBroceedings & O'Reilly, R. C. (2005). Prefrontal cortex and the
of the 18th Annual Conference of the Cognitive Sci- flexibility of cognitive control: Rules without sym-
ence Societypp. 329-334). Mahwah, NJ: Lawrence bols. Proceedings of the National Academy of Sci-
Erlbaum. ences10220), 7338-7343.

Noelle, D. C., & Cottrell, G. W. (2000). Individual differ- Samejima, K., Ueda, Y., Doya, K., & Kimura, M. (2005).
ences in exemplar-based interference during instructedRepresentation of action-specific reward values in the
category learning. In L. R. Gleitman, & A. K. Joshi striatum.Science310(5752), 1337-1340.

(Eds.),Proceedings of the twenty-second annual CO@'anfey, A. G., Loewenstein, G., McClure, S. M., & Co-

fer_ence of Fhe cognitive science socigip. 358-363). hen, J. D. (2006). Neuroeconomics: cross-currents in

Philadelphia: Lawrence Erlbaum. research on decision-makingrends Cogn S¢iL0(3),
Nomura, E. M., Maddox, W. T., Filoteo, J. V., Ing, A. D., 108-116.

Gitelman, D. R., Parrish, T. B., Mesulam, M.-M., &anfey A, G., Rilling, J. K., Aronson, J. A., Nystrom,

Reber, P. J. (2007). Neural correlates of rule-based; £ ¢ cohen. J. D. (2003). The neural basis of eco-
and information-integration visual category learning. nomi,c decision’-making in the ultimatum gam&ci-
Cereb Cortex17(1), 37-43. ence 300, 1755-1757.

Nosofsky, R. M., Clark, S. E., & Shin, H. J. (1989)g:nhanperg, T., Daw, N. D., Joel, D., & O'Doherty, J. P.

Rules and gxemplars in categorization, identification, (2007). Reinforcement learning signals in the human
and recognitionJournal of Experimental Psychology:  gyriatum distinguish learners from nonlearners during

Learning, Memory, and Cognitiod5(2), 282-304. reward-based decision making) Neurosci 27(47),
O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Fris- 12860-12867.

ton, K., & Dolan, R. J. (2004). Dissociable roles ogcp iz, w. (2007). Multiple dopamine functions at dif-
ventral and dorsal striatum in instrumental condition- o ant time coursesAnnu Rev Neurosc80, 259—288.

ing. Science304(5669), 452-454.
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neu-

O'Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & 5| gypstrate of prediction and rewar&cience 275,
Dolan, R. J. (2003). Temporal difference models and 153

reward-related learning in the human braiNeuron ] )
38, 329-337. Seiss, E., & Praamstra, P. (2004). The basal ganglia and

, . inhibitory mechanisms in response selection: evidence
O'Doherty, J. P., Hampton, A,, & Kim, H. (2007). Model- o sypliminal priming of motor responses in parkin-
based fmri and its application to reward learning and g4's diseaseBrain 127(2), 330-339.

decision makingAnn N Y Acad S¢il104 35-53. ] ] )
Skinner, B. F. (1938). The behavior of organisms

O'Reilly, R. C., & Frank, M. J. (2006). Making working Appleton-Century-Crofts.

memory work: A computational model of learning in .
the prefrontal cortex and basal ganglideural Com- Sloman, S. A (1996). The.emp|r|callcase for two systems
putation 18, 283-328. of reasoningPscyhological Bulletin119, 3—22.

O'Reilly, R. C., & Munakata, Y. (2000)Computational Thorndike_, E.L. (19_11)Anima| intelligence: Experimen-
explorations in cognitive neuroscience: Understanding @/ studies MacMillan Press.
the mind by simulating the braiCambridge, MA: The Wallis, J. D., & Miller, E. K. (2003). From rule to re-
MIT Press. sponse: Neuronal processes in the premotor and pre-

O'Reilly, R. C., & Rudy, J. W. (2001). Conjunctive repre- frontal cortex.Journal of Neurophysiolog®0, 1790—
sentations in learning and memory: Principles of corti- 1806.
cal and hippocampal functiorPsychological Review Watkins, C. J. C. H., & Dayan, P. (1992). Technical note:
108 311-345. Q-learning.Machine Learning8, 279.

Pasupathy, A., & Miller, E. K. (2005). Different timeYin, H. H., & Knowlton, B. J. (2006). The role of the
courses for learning-related activity in the prefrontal basal ganglia in habit formationNat Rev Neurosgi
cortex and striatumNature 433 873-876. 7(6), 464-476.

Poldrack, R. A., & Packard, M. G. (2003). Competi-
tion among multiple memory systems: converging evi-
dence from animal and human brain studésuropsy-
chologia 41, 245-251.



