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Abstract:

Humans learn how to behave directly through environmental experience and indirectly through rules and instructions.
Behavior analytic research has shown that instructions cancontrol behavior, even when such behavior leads to sub-
optimal outcomes (Hayes, 1989). Here we examine the controlof behavior through instructions in a reinforcement-
learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically
reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement prob-
ability. Despite experience to the contrary, instructionsdrove choice behavior. We present neural network simulations
that capture the interactions between instruction-drivenand reinforcement-driven behavior via two potential neural
circuits: one in which the striatum is inaccurately trainedby instruction representations coming from prefrontal cor-
tex/ hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement con-
tingencies, but is “overridden” at decision output. Both models capture the core behavioral phenomena but, because
they differ fundamentally on what is learned, make distinctpredictions for subsequent behavioral and neuroimag-
ing experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing
instructed behavior by fitting a series of abstract “Q-learning” and Bayesian models to subject data. The best-fitting
model supports one of the neural models, suggesting the existence of a “confirmation bias” in which the PFC/HC sys-
tem trains the reinforcement system by amplifying outcomesthat are consistent with instructions while diminishing
inconsistent outcomes.

Introduction

Functionally, reinforcement increases the probability
of the behavior that precedes it. Conversely, punishment
decreases the probability of the behavior that precedes it.
A rich literature catalogs this trial-and-error learning of
environmental contingencies (Thorndike, 1911; Skinner,
1938; Baum, 2004) Trial-and-error learning is, however,
less than ideal. Testing possible contingencies is a costly,
and sometimes dangerous, strategy. Humans have other
options. By using rules1 and instructions, we can reap the
benefits of others’ trial-and-error learning without person-
ally investing the time or enduring the perils associated
with such an exercise. We can learn not to smoke, to save
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1Here, we use the word “rule” in the behavior-analytic sense:a ver-
bal statement (in this case, instruction) that controls behavior (Hayes,
1993). While behavior shaped by trial-and-error experiences may be de-
scribable by a rule, such behavior is not referred to as rule-governed, but
rather, controlled by contingencies in the environment. This is because
such behavior is shaped by interactions with contingencies, rather than
through interactions with verbal rules

for retirement, and to obey traffic laws without experienc-
ing the negative outcomes that result from violating these
rules personally.

Nevertheless, individuals also learn when rules do
not apply. Various dual process models posit separa-
ble decision-making systems that contribute to rule-based
/ descriptive choices versus those based on experience
/ procedural-learning (Sloman, 1996; Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Hertwig, Barron, We-
ber, & Erev, 2004; Kahneman, 2003). Here, we ex-
amine rule-following in a reinforcement learning task
with well-studied neural correlates, and explore plausible
neurocomputational interactions between rule-based and
reinforcement-based systems that may produce this pat-
tern of behavior.

Rule-following is typically adaptive, and people may
be biased to follow instructions even when they are inac-
curate (Galizio, 1979; Hayes, Brownstein, Zettle, Rosen-
farb, & Korn, 1986; Hayes, 1993). An early study on the
effect known to behavior analysts as “rule-governance”
is illustrative. Kaufman, Baron, and Kopp (1966) placed
subjects on a variable-interval (VI) schedule for mone-
tary reward. The experimenters accurately described the
underlying schedule to one group of individuals and in-



accurately described the schedule to two others: telling
one of the latter groups they would experience a variable-
ratio (VR) schedule, and the other they would experience
a fixed-interval (FI) schedule. Despite the identical (VI)
contingencies shared among groups, the participants in
each group exhibited response patterns characteristic of
the instructed schedule over a 3 hour period: those in
the VR group responded at high rates, those in the FI
group responded at low rates, and those in the VI group
responded at the expected moderate rates.

Experiments investigating category learning in hu-
mans show the opposite effect, such that useful catego-
rization rules are sometimes abandoned in favor of catego-
rization by similarity (Allen & Brooks, 1991; Neal, Hes-
keth, & Andrews, 1995). In one such experiment (Nosof-
sky, Clark, & Shin, 1989), subjects classified objects into
one of two groups based on a number of attributes. After
each categorization trial, subjects received feedback about
the accuracy of their choice. One group received instruc-
tions permitting them to categorize stimuli accurately; the
other learned to categorize by trial and error. Follow-
ing a training period, subjects categorized novel stimuli.
Though instructed subjects received and practiced a rule
that could facilitate accurate categorization of these test
stimuli, they did not always follow this rule, instead they
reverted to categorization by similarity. Uninstructed sub-
jects showed a greater tendency to group by similarity,
leading the investigators to conclude that inductive learn-
ing about similarity had interfered with the use of instruc-
tions.

Noelle has developed a connectionist model of in-
structed learning that produces the effects found in cate-
gory learning experiments (Noelle & Cottrell, 1995, 1996,
2000). This model learns both to follow instructions
(modeled by setting the initial attractor states of the net-
work), and from trial and error. When following instruc-
tions, the model behaves like human subjects, sometimes
making categorization errors based on similarity when
instruction-following would produce a more accurate out-
come.

We build on this work by developing a biologically
anchored model of the mechanisms that may underlie
instruction-following even when experience indicates that
the instructions are incorrect. To this end, we replicate
the basic behavioral rule-governance effect using a task
with well-studied neural correlates (Frank, Seeberger, &
O’Reilly, 2004; Frank, Woroch, & Curran, 2005; Frank,
Moustafa, Haughey, Curran, & Hutchison, 2007a; Klein,
Neumann, Reuter, Hennig, von Cramon, & Ullsperger,
2007). We then modify a neural network model of
the reinforcement learning processes thought to govern
performance in this task (Frank, 2005) to accommodate
instruction-following. The modified model generates two

Figure 1:Probabilistic selection task. Example stimulus pairs,
which minimize explicit verbal encoding by using Japanese Hi-
ragana characters. Each pair is presented separately in different
trials. The three different pairs are presented in random order to
create blocks of 60 trials (20 per stimulus pair). Correct choices
are determined probabilistically, with percent positive/negative
feedback shown in parentheses for each stimulus. When reward
was programmed for a given stimulus, a punishment was pro-
grammed for its paired alternative. A test (transfer) phasefol-
lows in which all possible stimulus pairs are presented. The
effect of instructions on learning is measured by performance
on all pairs featuring the instructed stimulus. “Choose F” refers
to test pairs in which choice of stimulus F is optimal according
to reinforcement probabilities, whereas “Avoid F” refers to pairs
in which the optimal choice is to select the alternative stimulus.
Deviations from the accurate response (e.g. choose F, avoidF)
indicate instructional control.

concrete hypotheses for the neural underpinnings of rule-
following, and produces a number of testable predic-
tions for future empirical work. We then develop ana-
lytical mathematical models that attempt to capture the
essence of the two proposed neurobiological mechanisms
of instruction-following in abstract form. Qualitative fits
of these models to subject data allow us to test between the
computational accounts produced by the network simula-
tions. Finally, we fit Bayesian models to subject data, in
order to test alternative accounts for instruction-following
behavior and individual differences therein.



Methods

Subjects. A total of 34 subjects participated in the
experiment. Initially, a group of 18 subjects completed
the experiment with the instructional manipulation de-
scribed below. Two of these subjects failed to learn the
task to criterion and were excluded from the analysis. Ex-
perimental subjects were initially compared to historical
controls from a similar demographic (Frank, Santamaria,
O’Reilly, & Willcutt, 2007c). Because of differences in
training criteria (we removed the EF training criteria in
the experimental subjects), data from a group of 16 sub-
jects were subsequently collected. In the analyses that fol-
low we compare these 16 uninstructed controls (hereafter,
uninstructed subjects) with the 16 remaining experimen-
tal subjects (hereafter, instructed subjects). (A follow-up
experiment with controls and experimental subjects run
simultaneously produced similar results to those reported
here. This experiment was intended to test other aspects
of instruction-following which we do not consider here.)

Probabilistic Selection Task. Instructed Group. Sub-
jects completed a probabilistic selection task (Frank et al.,
2004) consisting of a training followed by a test phase
(Figure 1). In the training phase, subjects were presented
with one of three stimulus pairs per trial. We refer to these
stimuli as AB, CD and EF, although they were displayed
to subjects as Japanese Hiragana characters to minimize
verbal encoding. Feedback following selection of a stim-
ulus indicated that the choice was either “correct” or “in-
correct”. Stimuli were probabilistically rewarded, such
that no stimulus was always correct. In stimulus pair AB,
for example, choice of stimulus A led to positive feedback
in 80% of trials, whereas choice of B led to negative feed-
back in those trials (CD and EF pairs provided 70/30%
and 60/40% positive feedback respectively). During the
test phase, subjects received all possible pairings of stim-
uli without feedback.

The experimenter asked the instructed subjects to read
the task instructions on a computer carefully and ex-
plained they would receive a quiz to ensure they under-
stood the instructions fully. The instructions read as fol-
lows:

Two black symbols will appear simultaneously on
the computer screen. One of the symbols will be “cor-
rect” and one will be “incorrect,” but at first you won’t
know which is which. Try to guess the “correct” figure
as quickly and accurately as possible. There is no AB-
SOLUTE right answer, but some symbols have a higher
chance of being correct than others. Try to pick the sym-
bol that you find to have the highest chance of being cor-
rect.

Following these instructions, nine subjects read the
following (misleading) statement:

The following symbol will have the lowest probability
of being correct, so you should avoid selecting it. [The
Hiragana symbol for stimulus E was displayed.] You’ll
have to figure out which of the other symbols you should
select when they appear by trying them out. Use the “1”
key to select the figure on the left. Use the “0” key to
select the figure on the right.

The remaining instructed subjects received the same
instructions, but were shown the symbol for stimulus F
and told (again, misleadingly) that it would have the high-
est probability of being correct, and so it should be se-
lected2. Both sets of inaccurate instructions, if followed,
produce selection of the F stimulus.

After completing the instructions, the experimenter
asked the subjects how many figures were to appear on
the screen at once and how they would select the figure
on either side. Subjects were shown a card with all six
characters that would appear in the task and were asked
to indicate which had the highest (or lowest, depending
on condition assigned) probability of being correct. All
subjects answered these questions correctly on the first at-
tempt.

Next, subjects completed the training phase in which
they were randomly exposed to 20 trials of each stimu-
lus pair in 60-trial blocks. Previous versions of this task
(Frank et al., 2004; Frank et al., 2007c) have required sub-
jects to reach a performance criterion on each stimulus
pair within a single block (65% A choices on AB, 60%
C choices on CD, and 50% E choices on EF)3. Training
blocks are repeated until criteria on all three stimulus pairs
are met within a single block. In the current experiment,
the AB and CD criteria were retained, but the EF crite-
rion was removed because inaccurate instructions should
produce below chance performance on this pair. Two sub-
jects failed to meet training criteria, and their data were
excluded from analysis.

After the training phase, the subjects completed a test
phase in which they received all novel combinations of
stimuli interleaved with the original training pairs. Sub-
jects were told they would see new and old pairings of
the stimuli they had learned about, but would not receive
feedback following their choice. They were told to simply
go with their “gut” feeling in selecting the stimulus most
likely to be correct. Each test pair appeared four times in
random order. Subjects received no feedback during the

2In a follow-up experiment the manipulation was presented asa
“hint” (e.g. F will be the best) with no specific instruction to select
or avoid the instructed stimulus. This manipulation produced similar
results to those reported here

3These criteria were used to ensure that participants performed suffi-
ciently well in the test phase (ultimately used to evaluate relative learn-
ing from positive and negative feedback) without having to experience
excessive numbers of training trials.



test phase.

Probabilistic Selection Task. Uninstructed Group. 16
uninstructed subjects completed the task described above.
These subjects received the standard instructions with-
out instructions about any specific stimulus. Additionally,
these subjects received six presentations of each stimulus
during the test phase.

Behavioral Results and Discussion

As expected, misleading instructions produced sub-
optimal choice behavior on the instructed stimulus alone.
This effect occurred during both the training and test
phases.

Training

Consistent with previous data, subjects matched the
proportion of their responses to the proportion of positive
feedback outcomes associated with that stimulus choice
during the training phase (e.g., Estes, 1950; Frank et al.,
2004).4 This pattern occurred on all but the instructed
stimulus pair, in which choice was in accordance with the
instructions rather than the true probabilities.

Choice in the EF pair by instructed subjects was sub-
optimal. Despite experiencing negative feedback on 60%
of trials, these subjects continued to show a preference for
the F stimulus throughout the training phase (Figure 2a).
In the last block of instructed pair trials, these subjects
chose the optimal stimulus E only 36.5% (standard devi-
ation (sd): 22.4%) of the time, whereas uninstructed sub-
jects chose it 53% (sd: 19%) of the time. Across training,
a mixed-model ANOVA revealed an effect of instructions
(F(1,30)= 8.84, p =.0058) and of stimulus type (F(2,30)
= 38.91, p<.0001), but no significant interaction between
instructions and stimulus type (F(2,30) = 2.81, p = .076).
Planned comparisons revealed that the instructed subjects
selected the incorrect stimulus F significantly more of-
ten than the uninstructed subjects (uninstructed accuracy:
51%, sd: 16.9%, instructed accuracy: 34.1%, sd: 17.6%,
t(30)=2.78, p=.005).

These results might occur if subjects followed the in-
structions early in training then switched their behavior
after experiencing the true reinforcement contingencies.
Because some subjects completed the training phase in
one block (experiencing a total of 20 EF trials), we as-
sessed learning of the EF pair by comparing performance

4Although this response profile is sub-optimal (Given the static re-
inforcement probabilities in this experiment, in principle subjects could
maximize reward rate by always choosing the more frequentlycorrect
response in each pair), the tendency to probability match isthought to
reflect the inherent tendency for subjects to explore alternative options
to determine whether they might be better than the currentlyselected op-
tion (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Lau & Glim-
cher, 2005).

in the first 10 trials to that of the last 10 trials across all
subjects. For instructed subjects, EF performance was
more inaccurate during the first ten trials (14.4%, sd:
15.5%) than during the final 10 trials (36.9%, sd: 26.3%),
(t(15) = -2.94, p = .01). Despite this improvement in per-
formance over blocks, EF accuracy for instructed subjects
remained below that for uninstructed subjects during the
final ten trials (instructed accuracy: 36.8%, sd: 26.2%;
uninstructed accuracy: 52.5%, sd: 24.6%; t(30)= -1.73,
p<.05. one-tailed) (Figure 2b). This pattern of data sug-
gests that, although instructed subjects learned from expe-
rience (given their increased accuracy over blocks), they
did so at slower rate than expected. Subjects in previ-
ous studies exhibited rough probability matching on all
pairs in a comparable number of trials (e.g., Frank et al.,
2007c).

Because the number of training trials depends on sub-
jects accuracy in the AB and CD pairs, it is possible that
those reaching performance criteria after relatively few
trials may not have been exposed to sufficient instances of
reinforcement feedback to be able to determine that the E
stimulus had a higher probability of being correct than the
F stimulus. To address this possibility, we fit a Bayesian
learning model (see below for details) to subject data.

We compared posterior distributions produced by this
model for the E and F stimuli at the end of the train-
ing phase. We then considered whether the above effects
hold after filtering out participants who were judged not
to have sufficient feedback to discriminate between E and
F. Because the threshold for determining whether there
was sufficient feedback is arbitrary, we used a liberal and
more conservative threshold. In the liberal case we sim-
ply eliminated the 4 subjects (2 in each group) whose final
F modes were not actually lower than those of E (which
could occur due to spurious probabilistic feedback). In
the conservative case we eliminated 12 subjects (6 in
each group) whose final F modes were not at least one
standard deviation below those of stimulus E. Neither of
these filtering measures changed the pattern of effects de-
scribed above (Liberal: instructed subjects first ten trials
(16.4%, sd: 15.5%) compared to last ten (40%, sd: 25%)
t(14)= -2.73, p= .02; last ten instructed subject trials (40%,
sd: 25%) compared to last ten uninstructed subject tri-
als (58.6%, sd:19.2%) t(26)= -2.15, p= .04. Conservative:
instructed subjects first ten trials (18%, sd:14.8%) com-
pared to last ten (37%, sd:27%) t(9)=-2.08, p=.067; last
ten instructed subject trials (37%, sd:27%) compared to
last ten uninstructed subject trials (66%, sd:17%) t(18)=-
2.86, p=0.01)).

Test Phase

Performance during the test (transfer) phase provides
a measure of the extent to which subjects learned about
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Figure 2:a) Instructed subjects frequently chose stimulus F in the lastblock of the training phase, despite the repeated negative
feedback that resulted from doing so. These subjects were told that either that the F stimulus (40% correct) would have the highest
probability of being correct, or that the E stimulus (60% correct) would have the lowest probability of being correct. Inactual
fact, the E stimulus was more likely to be correct. The instructions did not affect learning of the uninstructed pairs, ABand CD.
Performance in the last 20 trials of each stimulus pair is shown here. Historical controls (Frank et al., 2007c) plotted here show
rough probability matching on all stimulus pairs.b) Experience with the true contingencies reduced the influence of instructions on
choice. However, by the end of training, subjects continuedto choose more in accordance with the instructions than withthe true
probabilistic contingencies.

the task contingencies. Recall the experimenter told the
subjects they would see both new and old pairings of the
stimuli from the training phase, and to go with their “gut”
on these novel pairs. Therefore, the test phase provides a
measure of the degree to which subjects integrated rein-
forcement values during the training phase. Performance
during the test phase also provides a way to determine if
subjects would follow instructions or rely on established
reinforcement values in a novel context, particularly given
that instructed subjects’ training performance approached
that of uninstructed subjects toward the end of training.

The subjects told that F would be good should be im-
paired at avoiding F when it is paired with relatively more
positive stimuli A, C, and E (80%, 70%, and 60% prob-
abilities respectively). Subjects told that E would be bad
should be impaired at picking E when it is paired with
relatively less positive stimuli B and D (20% and 30%
probabilities respectively) (Figure 1).

A mixed-model ANOVA revealed a main effect of
type of instruction (choose F, avoid E, and uninstructed)
between subjects (F (2,29)= 4.58, p = .0030), no within
subjects effect of test measure (avoiding F or picking E)
(F (1,29) = .8, n.s.) but a significant interaction between
instructions and test measure (F(2,29) = 11.45, p = .0002).

These effects were driven by group differences in
avoiding F when it was the less optimal stimulus (and
should have been avoided) (F(2, 29) = 10.9, p = .0003).
Group differences in choosing E when it was the best

choice (and should have been chosen), approached but did
not quite reach statistical significance, perhaps due to lack
of power (F(2,29) = 3.2, p = .0556). Subjects did not differ
in choosing F when it should have been chosen (F(2,29)
= .84, p = .4419) or in avoiding E when it should not have
been avoided (F(2,29) = 2.54, p = .0961) (Figure 3). Re-
moval of the subjects with posterior modes for E less than
one standard deviation above F did not alter these results
(subjects instructed to pick F were impaired at avoiding it:
F(2,17)= 5.66, p=0.0131, while impairments in subjects
instructed to avoid E did not reach significance F(2,17) =
1.79, p= .197).

Given that all of the subjects correctly learned the re-
ward probabilities associated with the uninstructed stim-
uli, these results are striking. During the training phase,
choice of A and C produced greater reward (roughly twice
as often) than choice of F. Subjects told that F had a high
probability of reward, however, consistently chose it over
statistically superior stimuli. Similarly, choice of B and
D produced fewer rewards than choice of E. Nevertheless,
subjects instructed to avoid E tended to, even when avoid-
ance resulted in selection of statistically inferior stimuli.
We found no differences in reaction times between groups
in the training or test phases.

Individual Differences

In the analysis above, we looked for effects at the
group level. An inspection of individual subject data,
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Figure 3: a) Subjects instructed that F had the highest probability of being correct were more likely to choose F in the test
phase when it was statistically suboptimal according to reinforcement probabilities (Avoid F condition), and were just as likely as
uninstructed subjects to select F when it was optimal.b) Subjects instructed that E had the lowest probability of being correct were
marginally more likely to avoid E when it was actually the more optimal response in the test phase (Choose E condition), and were
just as likely as uninstructed subjects to avoid E when it wassuboptimal.

however, revealed interesting within-group differences for
those receiving misleading instructions. In this group, five
of the sixteen subjects chose correctly on the EF pair on at
least 50% of the last 10 training trials. These subjects ap-
peared to be responding according to the experienced con-
tingencies rather than instructions. Although all subjects
initially followed the instructions, they were not equally
likely to continue to do so throughout the learning trials.

Visual inspection of the instructed training trials also
suggested variability in learning about the true contin-
gencies (see appendix for representative learning curves).
While some subjects seemed to gradually move towards
the correct stimulus, E, several others abruptly switched
response policies from choosing F to choosing E. Classi-
fying subjects on visual inspection of learning curves in-
troduces the bias of the rater. In attempt to reduce such
bias, we developed computational models that assess both
gradual learning and quick “insight”-type learning (see Q-
learning Models section).

Computational Approach and Theory Sketch

Our approach is to model instruction-following / rule-
governance in both biologically constrained neural net-
works and with simpler analytic models. First, we modify
an existing and well supported neural network model of
reinforcement learning, and show that our theoretically-
motivated modifications to include instructions can repli-
cate the effect seen in human subjects. We explore two
possible circuits by which instructions can influence per-
formance. The two hypotheses generated by the neural
network simulations are then tested with simpler analyt-
ical models fit to subject data. We designed these com-

peting analytical models to map on to, and thereby test
between, the core computational accounts by which the
networks function. Thus, our network simulations serve
not only to generate biologically plausible hypotheses, but
also to guide and constrain the types of analytical models
used to test these hypotheses. Finally, we fit Bayesian
models (which are not strongly constrained by network
accounts, but reflect the “ideal observer”) to subject data.

We hypothesize that the rule governance effect seen in
our paradigm is the product of competition and/or cooper-
ation between two neural systems. One of these systems,
dependent on the basal ganglia (BG), integrates reinforce-
ment contingencies slowly by trial-and-error. The other
system, dependent on the prefrontal cortex and hippocam-
pus (PFC/HC), rapidly updates representations based on
single outcomes or salient details. We expect this system
to encode task instructions.

Wide support exists for the key role of the BG, and
the neurotransmitter dopamine (DA), in both Pavlovian
and instrumental learning (Schultz, Dayan, & Montague,
1997; Schultz, 2007; O’Doherty, Dayan, Schultz, Deich-
mann, Friston, & Dolan, 2004), as well as habit learning
(Graybiel, 1998; Yin & Knowlton, 2006). Phasic changes
in DA levels follow feedback from the environment and
constitute a “prediction error” signal, which can be used
to drive learning (Montague, Dayan, & Sejnowski, 1996;
Schultz, 2007). Phasic bursts of DA occur when outcomes
are better than expected and phasic dips occur when out-
comes are worse than expected. These bursts and dips are
thought to increase and decrease the likelihood of the ac-
tion preceding the feedback by facilitating synaptic plas-
ticity, with bursts promoting “Go learning” by means of



D1-dependent LTP, and dips promoting “NoGo learning”
by means of D2 receptor disinhibition (Nishi, Snyder, &
Greengard, 1997; Frank, 2005).

We begin our modeling by assuming that the pre-
frontal cortex (PFC) and hippocampus (HC) work to-
gether to produce the rule governance effect. By this view,
the PFC encodes representations of instructions in an ac-
tive state that can provide top-down biasing on behavior
(e.g, Miller & Cohen, 2001). The working memory ca-
pacity of the PFC also allows for the flexible updating of
behavior in the interest of current goals, as well as ro-
bust maintenance of these goals in the face of distractions.
A number of neuroimaging studies report PFC activation
during rule-based learning (Filoteo, Maddox, Simmons,
Ing, Cagigas, Matthews, & Paulus, 2005; Nomura, Mad-
dox, Filoteo, Ing, Gitelman, Parrish, Mesulam, & Reber,
2007) as well as during rule-retrieval (Bunge, Kahn, Wal-
lis, Miller, & Wagner, 2003). The HC on the other hand,
encodes distributed representations of contexts, settingthe
occasion for a particular behavior in the presence of a spe-
cific context (for more discussion on relative contributions
of PFC and HC, see Atallah, Frank, & O’Reilly, 2004).

We posit that rule-following involves not only active
maintenance of PFC rule representations, but also retroac-
tive retrieval of the rule from episodic memory (HC; see
Braver, Gray, & Burgess, 2007). Recent work supports
this view. Nomura et al. (2007) demonstrated that suc-
cessful categorization of stimuli best grouped by simple
verbal rules elicits frontal and hippocampal activation,
whereas successful categorization of stimuli best grouped
by integrating information over trials elicits striatal activ-
ity. Bunge and Souza (2008) review a number of imaging
studies of rule representations, and conclude that rule-cue
associations are stored in the temporal lobes and retrieved
and maintained by PFC. Goto and Grace (2007) suggest
that the HC gates PFC activation of the striatum, such that
hippocampal episodic contextual memories can influence
the degree to which prefrontal rules influence output be-
havior.

Anatomical studies suggest that the PFC/HC system
might produce rule-governance in one of two ways. Al-
though this system projects widely in the brain, the main
projections of interest are those terminating in the stria-
tum, and those terminating in motor cortex / premotor
planning areas (e.g, Wallis & Miller, 2003). Rule-like
representations in the PFC/HC may bias the striatum to
learn what is described by rules, regardless of the true
contingencies experienced. This is consistent with the ex-
istence of “split circuits” involving interactions between
prefrontal-striatal loops and those involved in motor con-
trol (Joel & Weiner, 1999). Alternatively, rule-like repre-
sentations may bias the behavior at the level of the mo-
tor cortex, leaving the striatum to learn the correct en-

vironmental contingencies independently, but over-riding
the expression of this learning in behavior. Our simula-
tions demonstrate the plausibility of either of these cir-
cuits in producing rule-governance, but make different
predictions for both the underlying neural activation and
the extent to which rule-like or reinforcement-driven be-
havior will generalize to novel situations (e.g, if the rule-
based system is taken off-line or if the implicit striatal sys-
tem is primed in the absence of awareness). Next we re-
port results from neural network simulations, followed by
more abstract mathematical “Q-learning” models that can
provide quantitative fits to individual subject data using
a minimal number of parameters, to determine which (if
any) of the various posited mechanisms provide the best
fit.

Neural Network Model

The basic, uninstructed probabilistic selection task
was developed to test predictions from a computational
model of the basal ganglia and its modulations by phasic
changes in dopamine during positive and negative feed-
back (Frank, 2005)5. Data consistent with these pre-
dictions were reported in several recent studies in which
manipulations of the striatal dopamine system produced
patterns of learning biases in accord with those simu-
lated (Frank et al., 2004; Frank & O’Reilly, 2006; Frank
et al., 2007a; Klein et al., 2007; Frank et al., 2007c; Frank,
Samanta, Moustafa, & Sherman, 2007b; Cools, Altami-
rano, & D’Esposito, 2006).

The basic BG model (Figure 4) is instantiated using
the Leabra neural simulation framework (O’Reilly & Mu-
nakata, 2000), and uses phasic changes in dopamine dur-
ing reinforcement to drive synaptic weight changes rather
than an explicit supervised error signal (Frank, 2005). A
“point neuron” function simulates rate-coded activation of
network units, as a dynamic function of their membrane
potential, which itself is computed as a differential equa-
tion function of three ionic channel conductances (excita-
tion, inhibition, and leak). Parameters of neuronal firing
in different BG areas are tuned to match qualitative firing
patterns in the various brain regions (see Frank, 2006 for
mathematical details and parameters).

On each trial, the network receives an input stimulus
and executes a given motor response after its associated

5Due to space limitations, we primarily confine our discussion of
the network model to the modifications undertaken to producethe rule-
governance effect. The effects of our modifications are mostrelevant
at the level of the striatum and premotor cortex. Other simulated layers
(e.g. globus pallidus, subthalamic nucleus, etc.) supportaction selection
and have particular computational functions but do not playa critical
role in the rule-governance effect we replicate here, and therefore are
not discussed at length. For a detailed discussion of the basic model, the
interested reader should refer to Frank, 2005, 2006.
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Figure 4: The basic BG model (Frank, 2005, 2006) simulates
effects of dopaminergic manipulation on a variety of probabilis-
tic learning tasks using the same network parameters. Stimuli
presented in the input layer directly (but weakly) activatemo-
tor cortex. In order to execute an action, the motor cortex re-
sponse requires bottom-up thalamic activation, which occurs via
action selection in the BG. When activated, striatal Go units (in
left half of Striatum) encode stimulus-response conjunctions and
inhibit the internal segment of the globus pallidus (GPi). Be-
cause the GPi is normally tonically active and inhibits the tha-
lamus, the effect of striatal Go signal is to release the thalamus
from tonic inhibition, allowing it to become activated by top-
down projections from motor cortex (PreSMA). In turn, thala-
mic activation reciprocally amplifies PreSMA activity, thereby
generating a response. Striatal No-Go units have the opposite
effect, via additional inhibitory projections to the external seg-
ment of the globus pallidus (Gpe), which effectively prevents a
response from being selected. The net Go-NoGo activity differ-
ence is computed for each response in parallel by the BG cir-
cuitry and the response with the greatest difference is generally
selected. (The subthalamic nucleus (STN) additionally modu-
lates the threshold at which a response is executed, in proportion
to cortical response conflict, and is included here for consistency
but is not required for the effects reported in this paper).

striatal “Go” representation is sufficiently greater than its
corresponding “NoGo” representation. The output of the
BG circuitry (the globus pallidus) in effect computes the
Go-NoGo activity difference for each response in parallel.
The response with the greatest difference is most likely to
be facilitated via “disinhibition” of the thalamus, allow-
ing recurrent thalamocortical projections to amplify the
corresponding motor cortical response (and suppress the
alternatives via lateral inhibitory competition). Thus, fol-
lowing each stimulus presentation, a single response is se-
lected as its corresponding motor cortical units are active

and the others suppressed.

Following the network’s choice, phasic changes in
dopamine firing occur to simulate reinforcement feed-
back: DA bursts for positive outcomes and dips for neg-
ative outcomes. Connection weights are adjusted based
on the difference between pre and postsynaptic activity
states across the response selection (tonic DA) and feed-
back (phasic DA) phases. Bursts activate the Go units
in the striatum (via D1 receptor stimulation) and inhibit
the NoGo units (via D2 receptor stimulation). This oc-
curs after correct choices, and increases the probability
that Go activity in the striatum will elicit the correct ac-
tion in motor cortex. DA dips, on the other hand, together
with ongoing excitatory (glutamatergic) projections from
the cortex, allow the NoGo units to become disinhibited.
An increase in the efficacy of No-Go units prevents ac-
tivation of the incorrect motor response and makes that
choice less likely in the future. This results in the training
of “Go” and “No-Go” columns in the striatum, which pro-
duce stimulus approach or avoidance respectively for each
of the two possible motor responses. Intially, the selected
response is the product of random connection weights, to-
gether with noisy unit activity, but becomes the product of
learning as training progresses.

Simulating the Probabilistic Selection Task

The model experiences a training and test phase much
like that experienced by human subjects. During the train-
ing phase, the model receives different input stimuli (each
represented by a column of four input units). After set-
tling on an action, the model receives probabilistic feed-
back about the chosen response. Over time, the prob-
abilistically superior and inferior responses are learned.
Upon completion of training, the model receives a test
phase in which a response is made for each stimulus pre-
sentation without feedback. The test phase assesses the
degree to which the model striatum had learned Go or
NoGo to different stimuli and responses during the train-
ing procedure (Frank et al., 2004; Frank et al., 2007b).

The input layer receives each stimulus alone on differ-
ent trials, and the resulting activity patterns over all striatal
units are recorded. The summed relative Go to No-Go ac-
tivity in the striatum produces an activation-based recep-
tive field for each response to a stimulus. Networks that
learned a particular stimulus-response mapping with a
high probability of being correct should display strong Go
representations for the response associated with choosing
that stimulus. Similarly, networks that learn a particular
stimulus-response mapping with a high probability of be-
ing incorrect should display stronger NoGo associations
for the corresponding choice. Simulated changes in stri-
atal dopamine levels can influence the degree to which
networks are biased to learn Go or NoGo (Frank et al.,



2004; Frank et al., 2007b), as observed in pharmacologi-
cal experiments.

Simulating Instructions

We assume that experiential learning in the absence
of instructions relies on feedback, driving the BG system.
The reduced effect of feedback in rule-governed behavior
suggests that the BG system is somehow biased, or over-
ridden by the presentation of rules.

The putative neural structures that underlie rule gov-
ernance in our manipulation are the PFC and HC. We
model the “top down” bias of these structures on the BG
by adding a single abstracted PFC/HC layer that receives
input and projects to the striatum and the motor cortex.
Upon receiving input, the PFC/HC creates an activation-
based distributed representation of the stimulus, which is
a product of the layer’s initial random weights. These acti-
vations then pass through the striatal learning system. The
input layer also projects to the striatum and motor cortex
as in the standard model.

For the purposes of our simulations, we have ignored
some biophysical details with respect to how rules are en-
coded. The added layer, for example, does not feature
the recurrent projections or specialized intracellular ionic
currents widely used to capture the working memory ca-
pacity of the PFC (e.g, O’Reilly & Frank, 2006; Durste-
witz, Seamans, & Sejnowski, 2000). Nor is the sparse,
distributed activity thought requisite for episodic encod-
ing in HC present (O’Reilly & Rudy, 2001). Because
we remain agnostic about the specific way in which these
neural structures drive rule-governance (i.e., the degreeto
which the PFC or HC is responsible), these abstractions
do not detract from the results. Our current focus is on
the downstream (i.e. striatal and motor cortical) effects
of these structures during instruction-following. Future
models will incorporate top-down modulatory structures
in a more biologically detailed manner, and attempt to de-
cipher the relative contributions of PFC and HC in instruc-
tion updating, maintenance, and retrieval.

We model instructions by presenting each network
with a single trial in which the instructed stimulus and
its instructed (misleading) response activation at the out-
put layer occur together. To model the rapid, single-trial
acquisition of instructions, we use a much higher learn-
ing rate for this trial (see appendix for parameter val-
ues), where this higher learning rate is applied to the
weight changes from the input to the PFC/HC and from
the PFC/HC to the striatum and motor cortex layers. This
single high learning rate trial is an attempt to capture
the rapid encoding of task rules in the explicit mem-
ory system, a process that should depend on the rapid
learning functions of the hippocampus (e.g., O’Reilly &
Rudy, 2001) together with the gating of prefrontal work-

ing memory representations for task rules (Braver & Co-
hen, 2000; Frank, Loughry, & O’Reilly, 2001; O’Reilly &
Frank, 2006; Rougier, Noelle, Braver, Cohen, & O’Reilly,
2005). As a result, networks dramatically increase the
weights along these projections, such that the instructed
input very likely produces this same ”incorrect” response
on subsequent presentations (due to reactivation of the
PFC/HC “rule” representation and its associated biasing
of striatal/motor responses). Following the instructed
trial, the learning rate returns to its lower normal level
(on the assumption that prefrontal rule representations
are only gated once and thereafter only retrieved). The
remainder of the training and test phase is completed
as described above with no further manipulation. As
such, other uninstructed stimuli still activate differentdis-
tributed patterns of PFC/HC units, but these are not asso-
ciated with strong biases to choose a given response.

The complete modified model represents the instruc-
tions in the abstracted PFC/HC and projects them to both
the striatum and the motor cortex. As noted above, rule-
governance may result from reactivation of the PFC/HC
instruction representations that then bias the BG system
to select the probabilistically suboptimal response. Due
to Hebbian learning in corticostriatal projections, repeated
reactivation of PFC/HC rules can train the BG such that it
never learns the true probabilistic contingencies, but in-
stead continually ingrains the association learned by the
instructed trial. Alternatively, the BG may be free to learn
the reinforcement contingencies experienced in the envi-
ronment accurately, but the PFC/HC can override this BG
learning directly by simply biasing the premotor cortical
decision outputs. The wiring of these structures lends it-
self to either of these possibilities, where PFC/HC con-
nections to the BG explain the former, and PFC/HC con-
nections to the motor cortex explain the latter. To in-
vestigate the differential roles of these projections in our
model, we selectively removed them. In the PFC-MC
model, the PFC/HC projects only to the motor cortex (Fig-
ure 5a). In the PFC-BG model, the PFC/HC projects only
to the striatum (Figure 5b).

Neural Network Results

Complete Model

Training Phase. The instructed and uninstructed mod-
els produce the same probability matching behavior ob-
served in human subjects on all but the instructed stim-
ulus (Figure 6a). After stimulus presentation, the model
can make one of two probabilistically rewarded responses
such that when stimulus S1 is presented, response R1 is
correct 80% of the time, whereas response R2 is correct
20% of the time (As in the human version of the task, on
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Figure 5:Alternative pathways by which rule-based representationscan bias responding in the network.a) In the PFC-MC model,
the PFC/HC “rule” layer projects to the motor cortex, but notto the striatum.b)In the PFC-BG model, the PFC/HC layer projects
to the Striatum, but not to the motor cortex. The complete model features both of these projections.

each trial one response is correct while the other is incor-
rect). For the instructed stimulus, S4, the probability of
receiving “correct” feedback for each response matches
that used in human subjects (40% for response R1 and
60% for response R2).

During the training phase, the proportion of instructed
stimulus choices is a function of the learning rate ap-
plied in the initial trial, with higher instructed learning
rates producing more rule-like behavior. Thus, the single
instructed-learning trial replicates the basic behavioral re-
sult seen in the training phase. The actual values of this
learning rate parameter are arbitrary. For each simulation,
we use the value that provides the best qualitative fit to the
behavioral data (see appendix for learning rates).

Despite exhibiting rule-governed choice, the in-
structed model demonstrates some learning about the true
contingencies over trials, as do humans. Figure 6b illus-
trates that the probability of the model selecting the in-
structed stimulus decreases over epochs, due to the feed-
back provided about the true environmental contingen-
cies.

Though the qualitative patterns in the uninstructed
models and uninstructed subjects are similar, the trajec-
tory of the learning curves are slightly different. Due to
the removal of the EF criterion in the behavioral experi-
ment, several subjects were able to proceed to the testing
phase before receiving adequate feedback to decipher the
probabilities associated with the EF pair. As mentioned
above, this caused uninstructed subject group to remain
slightly below the expected 60% accuracy on this pair
at the end of training (see historical controls Figure 2a).
Removal of subjects receiving insufficient feedback (see
Bayesian analysis in appendix) resulted in greater corre-

spondence in probability matching between subjects and
models.

Test PhaseDuring the test phase, the uninstructed
model exhibits the expected Go and NoGo activity in the
striatum. That is, positive Go activation is observed for
responses to stimuli with a high probability of providing
“correct” feedback, whereas greater NoGo activation is
observed for responses to stimuli with a low probability
of providing “correct” feedback. This pattern replicates
those described in earlier models without a PFC/HC layer
(Frank et al., 2004; Frank et al., 2007b). Thus, our added
layer does not alter the basic striatal reinforcement learn-
ing characteristics of the model.

In the “complete” instructed model, the PFC/HC
projects to both the striatum and the motor cortex. Be-
cause we can apply independent learning rates to these
projections for the instructed trial, this model can pro-
duce two qualitatively different results. If we apply a rel-
atively high learning rate to the weights from the PFC/HC
to striatum in the instructed trial, then the striatum shows
Go activation for the instructed stimulus even during the
test phase, despite having experienced negative feedback
on 60% of trials. This result suggests that the PFC/HC
trains the striatum (both during the instruction trial itself,
and as the instruction is reactivated during each stimulus
presentation) to represent the reinforcement probabilities
incorrectly. In contrast, if the PFC/HC to motor cortex
projection experiences the instructed trial with a relatively
high learning rate, the striatum shows NoGo activation for
the instructed stimulus. In this case the striatum learns the
correct contingencies from experience, but is overridden
by the PFC/HC. Because there is no principled way to
decide how the brain differentially applies these learning
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Figure 6:a) Complete (dual projection) model performance on a reduced probabilistic selection task involving four stimuli. When
presented with stimulus S1 (S2), response R1 (R2) is positively reinforced on 80% of trials. For S3 (S4), R1 (R2) is reinforced
on 60% of trials. Instructed models were “misled” in an initial instructed trial that R1 would be correct in response to the critical
(instructed) stimulus S4*. The instructed model shows the expected matching behavior on all but the instructed stimulus-response
mapping. Choice on the instructed stimulus is suboptimal with respect to actual reinforcement probability, as in humansubjects.b)
The instructed model, like human subjects, shows some learning of the true probabilities over time. Over 10 epochs performance
on the instructed stimulus drifts up to match the allocationof F stimulus responses seen in human subjects. The uninstructed
model begins somewhat below 50%. This occurs because the themodel does not always clearly choose a specific response early in
training, instead producing a blend of responses (which is counted as incorrect). As feedback accumulates in training,the model
begins to probability match the S4 stimulus.

rates (or even if it does), we do not consider these results
further, but rather, explore each alternative with the single
projection models described below.

Single Projection Models

The modeling results suggest that the representations
of rules in the PFC/HC either bias what the striatum learns
about environmental contingencies or override its accu-
rate contingency learning. To distinguish between these
“bias” and “override” accounts, we conducted simulations
using single projection models (PFC-BG and PFC-MC
models respectively), and then probed for differences in
striatal activity during the test phase.

During the training phase, the instructed versions of
these models produced “behavioral” results virtually iden-
tical to that of the complete instructed model. They each
exhibited probability matching on all but the instructed
condition. On the instructed condition, both models pro-
duced the inaccurate, rule-governed response over the ac-
curate, probabilistic response. Differences between the
single projection models arise, however, when probing the
learned striatal activations in response to the instructed
stimulus during the test phase. In this phase, the PFC-
BG model showed relatively greater striatal Go activation
for the instructed response (Figure 7). Here, the instruc-
tion representations biased the learning of the task by the

striatum. This occurs for two reasons. First, the initial in-
structed trial produce large weight changes such that the
representation of instructions in PFC/HC activates the as-
sociated striatal Go response. Second, subsequent presen-
tations of the instructed stimulus reactivate these striatal
Go representations, and in effect increase the effect of DA
bursts following choice of instructed response, while also
diminishing the effect of DA dips when the instructed re-
sponse receives punishing feedback. Thus, the PFC-BG
bias model constitutes a neurally plausible instantiation
of a “confirmation bias”.

The PFC-MC model, in contrast, produced striatal
associations similar to those of the uninstructed model
(Figure 7), but even more exaggerated. Here, the stria-
tum learned the correct task-related contingencies, even
though the model chose according to the instructions at
the output level. Indeed, relative to the control model, the
PFC-MC model showsgreaterstriatal NoGo associations
for selecting the instructed stimulus. This enhanced NoGo
learning arose because the PFC-MC projections override
striatal associations, thereby causing the network to select
the instructed stimulus, and in turn to experience nega-
tive feedback and correspondingly enhanced NoGo repre-
sentations. Thus whereas in the PFC-BG model, contin-
ued choice of the instructed stimulus can further train the
striatum to “like” the instructed stimulus, in the PFC-MC
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Figure 7: Striatal Go and NoGo unit activation-based recep-
tive fields in the test phase when presented with the instructed
stimulus. Here positive values indicate greater Go than NoGo
activity for selecting R1 compared to R2. Uninstructed models
show negative values, indicating a correct preference for R2 over
R1 in response to the instructed stimulus, S4. Although both
single projection models behaviorally chose response R1 (con-
sistent with the instructions but inconsistent with reinforcement
probabilities), their test phase striatal activations show that they
learned fundamentally differently. Whereas the striatum in the
PFC-MC model appropriately learned NoGo to the instructed
response, the PFC-BG model was biased to learn Go.

model instruction following increasingly results in stri-
atal NoGo activation. Nevertheless, reactivation of the
PFC/HC representations on subsequent instructed trials
drive Hebbian learning along the direct PFC/HC to mo-
tor cortex pathway, further ingraining the response. Thus,
the PFC-MC model predicts that the striatum learns a
very negative association to the instructed stimulus de-
spite conflicting choice behavior.

Q-Learning Models

Our neural network simulations examine two poten-
tial neurobiological circuits that produce rule-governed
behavior in the face of conflicting probabilistic reinforce-
ment, and make different predictions for future experi-
ments (see Discussion). The number of parameters in
these network models, however, prevents us from quan-
titatively fitting models to individual trial-by-trial subject
behavior. In contrast, although not specifying the pre-
cise mechanisms by which learning and choice behavior
is achieved, more abstract reinforcement learning algo-
rithms (e.g. Q-learning, temporal differences) can capture

the computational functions that these brain processes are
thought to implement and provide quantitative fits to be-
havior with a minimal number of parameters (O’Doherty
et al., 2004; Cohen & Ranganath, 2007; Lohrenz, Mc-
Cabe, Camerer, & Montague, 2007; Daw et al., 2006).

We attempt to capture and test the two hypothesized
rule-governance circuits delineated by the neural network
simulations via modifications of a simplified Q-learning
reinforcement algorithm (Watkins & Dayan, 1992) pre-
viously applied to this probabilistic selection task (Frank
et al., 2007a). Because any number of abstract analytical
models might be developed to account for subject data,
we fit only models which conceptually match the “bias”
and “override” hypotheses described by the network ac-
count above. Investigators increasingly utilize fMRI as a
method to constrain analytical models with biological sig-
nals (see O’Doherty, Hampton, & Kim, 2007 for review).
Our approach here is similar, though we use the plausible
biological circuits identified by our neural network simu-
lations to guide the development of our analytic models.
Those models providing the best trial-to-trial fit to behav-
ior might help discriminate between the competing hypo-
thetical mechanisms.

To preview the results, our simulations suggest that
subjects continue to learn with their reinforcement sys-
tem, but that instructions amplify reinforcement experi-
ences consistent with pre-set instructions and diminish
reinforcement experiences inconsistent with them. This
model is most consistent with the PFC-BG (bias) neu-
ral model described above, in which each rule-governed
model choice reactivates the associated PFC rule repre-
sentation which biases the striatum and increments the
weight in that trial (despite conflicting reinforcement).

Standard Q-Learning

As a baseline for comparison to our modified mod-
els, we use a form of the Q-learning algorithm previously
altered for the probabilistic selection task (Frank et al.,
2007a). This model incorporates two learning rate param-
eters, which separately scale value updates for positive
(“correct”) and negative (“incorrect”) outcomes. These
two learning rates embody our assumption that separate
mechanisms within the BG can support Go and NoGo
learning. This model computes a Q-value for each stimu-
lus i in the task in the following way:

Qi(t+1) = Qi(t)+αG[r(t)−Qi(t)]++αL[r(t)−Qi(t)]−
(1)

WhereαG is a learning rate parameter for positive out-
comes,αL is a learning rate parameter for negative out-
comes, and r is reward set to 1 for gains and 0 for losses.
Q-values range from 0 to 1, and are initialized to .5 for all



stimuli, in conjunction with subjects’ initial uncertainty of
value.

No feedback occurs during the test phase, so Q-value
updates cannot occur during that phase. Instead, of all
training parameters, those producing final (post-training)
Q-values that best correspond to subjects’ choices in the
test phase are derived. This allows us to provide an es-
timate of the learning rates of aQ′ system in control of
behavior during the test phase, based on its learned rein-
forcement history during training.

The Q′ value-updating equation is similar to that
above:

Q′

i(t+1) = Q′

i(t)+α′

G[r(t)−Q′

i(t)]++α′

L[r(t)−Q′

i(t)]−
(2)

In prior simulations, it was shown that theQ system
that responds to trial-to-trial feedback during the train-
ing phase likely reflects a different neural and cognitive
system than theQ′ system which integrates probabili-
ties across trials, and which is needed to discriminate
between subtle differences in these probabilities at test
(Frank et al., 2007a). In particular, learning rates asso-
ciated with trial-to-trial adjustments during training were
associated with prefrontal function, whereas those asso-
ciated with integrating probabilities were associated with
striatal function. The assumption is that, during the train-
ing phase, working memory capacity of the PFC allows
for win-stay/lose-shift strategies, hypothesis testing,and
exploration based on uncertainty about reward structure
for each stimulus pair. As a result, the best fitting be-
havioral learning rates to participants choices in the train-
ing phase are largely influenced by these recency effects,
even as the striatal system slowly integrates reinforcement
probabilities “under the hood”. Conversely, during the test
phase, there is no feedback – and therefore no longer hy-
pothesis testing, exploration, or recency effects. Further,
all novel stimulus pairings are presented which can only
be discriminated by comparing probabilities based on in-
tegrated past experience in the task. In this case, best fit-
ting learning rates are thought to reflect the striatal inte-
gration of reinforcement experiences throughout training,
which are then used for choice at test.6

In this basic Q model, and in our bias account, the
“softmax” logistic function computes choice. The prob-
ability of choosing stimulus A over B on any trial, for

6Note that the assumption that the division between trainingand test
choice is binary is likely overly simplistic, and softer choice mechanisms
for combining the two systems are possible (Frank et al., 2007a). Nev-
ertheless, these require additional assumptions about when and how to
combine the systems, and additional parameters for doing so(see also
Daw, Niv, & Dayan, 2005), and empirical genetic data providesome
evidence that training and test choices are primarily influenced by pre-
frontal and striatal function, respectively.

example, is

PA(t) =
e

QA(t)

ζ

e
QA(t)

ζ + e
QB(t)

ζ

(3)

whereζ is an inverse gain parameter controlling the
tendency to “exploit” (choose in accordance with estab-
lished Q-values) or to “explore” and sometimes select the
stimulus with the lower Q-value. Probabilities of select-
ing other stimuli are computed in the same fashion.

Bias hypothesis: Instructed Learning Model

According to the neural network simulations, rule-
governance may work by inaccurately training the stria-
tum to learn according to the instructions rather than ac-
cording to the extant contingencies. As described above,
the PFC-BG network model exerts this bias in two ways.
The initial instructed learning trial inaccurately assigns a
high value to the instructed response. Second, the effect
of subsequent feedback from the instructed response is in-
creased when it is consistent with the instructions and re-
duced when it is inconsistent.

To capture these dynamics, we modified the basic al-
gorithm in two ways. To reflect the effects of the initial
instructed trial, we altered the initial Q-values of the in-
structed stimuli. Instructions to choose F should produce
results best fit by a high initial value ofQF , whereas in-
structions to avoid E should produce results best fit by a
low initial value ofQE. We therefore set the Q-value of
F to 1 and the Q-value of E to 0 for instructed “choose F”
and “avoid E” subjects respectively. All other stimuli had
initial values of 0.5 as usual.

To capture the effects of modulating the impact of
feedback following an instructed response, we altered the
Q-learning algorithm to modify value updating for the
instructed stimulus (Instructed Learning: IL). For sub-
jects instructed to choose F, we amplified value updates
when instruction-following led to positive outcomes and
reduced value updates when instruction-following led to
negative outcomes. The model computes updates for sub-
jects as:

Qi(t + 1) = Qi(t) + αIαGδ+ +
αL

αI

δ− (4)

WhereαI (1 ≤ αI ≤ 10) is a free parameter that
amplifies gains and reduces losses following choices of
instructed stimulus F. This parameter creates an index of
biased learning with values greater than one indicating an
amplification of Q-value updates following positive out-
comes consistent with instructions, and diminished up-
dating after negative outcomes inconsistent with instruc-



tions. We also constrained the maximumαI value by
αG andαL.7 For subjects instructed to avoid E, we sim-
ilarly scaled value updates such that updates consistent
with instructions were amplified while those that were in-
consistent were diminished. This entailed amplification of
losses, and reduction of gains, following choices of stim-
ulus E.

Instructions may exert their effects exclusively by am-
plifying or reducing outcomes (rather than doing both, as
above), be they gains or losses. To investigate this possi-
bility, the IL model was modified to only amplify updates
(IL-A, amplify gains for subjects instructed to choose F
and losses for subjects instructed to avoid E) and another
to reduce outcomes (IL-D, diminish losses for subjects in-
structed to choose F, and gains for subjects instructed to
choose E).

Override hypothesis: C-Learning Model

The alternative neural network model indicates that
the effect of instructions is to have the PFC/HC directly
activate motor cortical responses. By this view, the
PFC/HC receives an initial learning trial which rapidly in-
grains the instructed stimulus-response mapping. Experi-
ence that this instruction is incorrect may reduce instruc-
tional control over time, as striatal NoGo associations be-
come large enough to play a role in selection. However, in
parallel, continued reactivation of the instructed response
in motor cortex upon its selection can slowly drive di-
rect stimulus-response “habits”, in terms of strong synap-
tic weights due to Hebbian learning between the stimulus
representation and the motor cortical response, which be-
come independent of BG functionality over time (Frank,
2005).

To encapsulate these stimulus-response characteris-
tics, we modified the Q-algorithm by introducing a vari-
able that grows with the number of times a stimulus has
been chosen. In addition to computing standard Q-values,
the model tracks Choice (C) values for each stimulus as

Ci(t + 1) = Ci(t) + αC (5)

whereαC is a free parameter that increments the up-
dates of C-values each time stimulusi is chosen. C-values
and Q-values are then summed in “softmax” such that the
probability of choosing F over E is

7If αI is greater than 1/αG, Q-values can exceed 1.0, in which cases
positive outcomes (with reward values of 1.0) actually leadto negative
prediction errors. The resulting instability of Q value updates is detri-
mental for the optimization algorithm to find best-fitting parameters. To
prevent this, we restrictαI to be less than 1/αG for gains and 1/αL for
losses.

PF (t) =
e

QF (t)+CF (t)

ζ

e
QF (t)+CF (t)

ζ + e
QE(t)+CE (t)

ζ

(6)

The summation ofQ’s andC ’s is based on the com-
bined contributions of the PFC/HC and the BG to fol-
low the instructions or the contingencies respectively. C-
values increase over choices and make repeated stimulus
selection more likely, independent of the outcomes asso-
ciated with that selection. Thus, for instructed subjects,
relatively large C-values accumulate as F is chosen, fur-
ther increasing the probability of its selection.

To capture the initial task instructions, the C-value of
the F stimulus was initialized as a free parameter (0.01 ≤

CF ≤ 5). This free parameter applies to both instructed
groups because instructions to avoid E and to choose F
both result in F selection. C-values for all other stimuli
were initialized at zero, but nevertheless accumulate and
are similarly integrated in the softmax choice function.

Bayesian Q-learning

We also implemented the Q-learning models de-
scribed above in a Bayesian framework (Dearden, Fried-
man, & Russell, 1998; Daw et al., 2005), with multiple re-
lated motives. First, because it reflects the true Bayesian
probabilities experienced by each individual, this frame-
work naturally provides an objective measure of whether
sufficient feedback information was received to learn the
true statistical relationships between the training stimuli,
given the probabilistic reinforcement schedule. Second,
the Bayesian framework can determine whether subjects’
tendency to follow instructions may reflect a strong ini-
tial prior distribution over Q-values associated with the
instructed stimulus, without having to assume that subse-
quent learning rules are “special” for the instructed stimu-
lus. That is, it is in principle possible that reduced learning
from outcomes inconsistent with instructions (as in the IL
model) might be captured by the Bayesian update rule in
which the learning rate is effectively diminished when the
initial prior is strong enough. Simulation results show that
this is not the case, and that addition of an IL-like mech-
anism is necessary even within the Bayesian framework
to fit participants’ test choices. Finally, we implement a
Bayesian version of the override model which posits that
subjects continue to choose according to the instructions
until they are sufficiently confident that the evidence re-
jects the instructions. Such an analysis can potentially in-
dicate the degree to which subjects attained “insight” into
the inaccuracy of the rule. We note that, unlike the mod-
els above, these analyses are not as directly constrained by
mechanisms identified in our network models, but enable
us to incorporate the notion that participants may repre-
sent different degrees of “belief”.



Basic Bayesian Model. In Bayesian learning, rather
than representing a single Q-value for each stimulus, the
assumption is that subjects represent a distribution of be-
liefs about the Q-value for each stimulus (see Kruschke,
in press for a comparison between classical and Bayesian
approaches to learning). Because the stimulus outcomes
in the probabilistic selection task are characterized by a bi-
nomial distribution, we represented beliefs using the beta
distribution8, characterized by hyperparametersα andβ.
The probability density function of the beta distribution is
as follows:

f(x; α, β) =
xα−1(1 − x)β−1

∫ 1

0
uα−1(1 − u)β−1du

(7)

where the integral in the denominator is the beta func-
tion B(α, β) and is a normalization factor that ensures
that the area under the density function is always 1. The
α andβ parameters are updated after each outcome by
adding to the running counts of “correct” and “incorrect”
feedback to the priorα andβ respectively. The defining
parameters of the posterior distribution for each stimulusi
are calculated after each outcome using Bayes rule, which
given a beta prior simply amounts to:

αi(t + 1) = αi(t) + pos (8)

βi(t + 1) = βi(t) + neg (9)

wherepos = 1 during positive feedback, and 0 during
negative feedback, and vice-versa forneg. In addition, the
running counts are decayed multiplicatively on each trial
by a free parameterγ (1 ≥ γ ≥ 0). This decay parameter
represents the subject’s potential assumption that the dis-
tributions of stimulus outcomes might change with time
(without such decay, the distributions become quite nar-
row, or “confident”, after relatively few trials; Daw et al.,
2005).

At each trial, the mode and variance of the current
beta distributions for each stimulusi are computed ana-
lytically:

modei =
αi − 1

αi + βi − 2
(10)

σ2
i =

αβ

(α + β)2(α + β + 1)
(11)

Once the beta distributions are calculated, we then ap-

8The use of a beta distribution is motivated by the fact that itforms
the conjugate prior to the binomial distribution, such thatapplication of
Bayes rule to update the parameters of the prior distribution results in a
posterior distribution that is also itself a beta distribution.

ply softmax in the usual way, using the modes of the den-
sity function as the best estimate of each Q-value, such
that the probability of choosing A in an AB trial is

PA(t) =
e

modeA(t)

ζ

e
modeA(t)

ζ + e
modeB(t)

ζ

(12)

whereζ is an inverse gain parameter controlling the
tendency to to choose in accordance with established
modal values. Probabilities of selecting other stimuli are
computed in the same fashion.

At γ = 1 (i.e., no forgetting), this model computes the
optimal Bayesian probability distributions for each sub-
ject’s set of training data. Comparison of the modes of
final distributions for any stimulus pair should reveal the
true probabilistic relationship between the stimuli based
on actual feedback delivered to each participant. If this
relationship of final modes does not reflect the intended
probabilistic relationship (i.e, EF has a 60:40 ratio), we
conclude that the subject did not receive sufficient feed-
back to discriminate between the stimuli. Of the 32 sub-
jects included in the analysis, two from the each group
(instructed and uninstructed) had final modes for the F
stimulus that were higher than those for the E stimulus
(see appendix for representative posterior estimates). As
discussed above, exclusion of these subjects, or even of
subjects whose F distributions were not at least one stan-
dard deviation below those of stimulus E, did not alter the
effect of instructions.

Bayesian “Strong Prior” Model. We altered the initial
prior Q distributions for instructed stimuli to test the pos-
sibility that a model with no “special” learning rules could
account for the observed data. In this model, for subjects
instructed to choose F, the initialα parameter is allowed
to vary for the prior F distribution. High initialα values,
with β held to 1 produce distributions with modes close
to 1, reflecting subjects’ belief that F is correct. Similarly,
we allowedβ to vary freely for the prior E distributions
for subjects instructed to avoid E. Highβ values withα
held to 1 produce distributions with modes around 0, re-
flecting subjects’ belief that E is incorrect. Free initial
hyperparameters were bound between .01 and 1000. Both
ζ andγ were also free to vary and were bound as above.

Bayesian IL Model. To provide a strictly comparable
comparison for the “strong prior” model, we developed
an alternative Bayesian bias model. In this model, we al-
lowed the initial hyperparametersα andβ to vary for in-
structed stimuli exactly as above. The defining parameters
of the posterior distribution for each uninstructed stimulus
i were also calculated as described above. Additionally,
for instructed trials, the parameterω is used to differen-
tially scale consistent and inconsistent outcomes as in the



basic (non-Bayesian) IL model.9 Instructed posterior dis-
tributions for subjects told to choose F were computed as

αF (t + 1) = αF (t) + ωpos (13)

βF (t + 1) = βF (t) +
1

ω
neg (14)

Where100 ≥ ω ≥ 1, and modal probability estimates
are selected among via the softmax choice rule described
above. For subjects instructed to avoid E, the modified
update terms,ω and1/ω, are swapped across hyperpa-
rameters such that outcomes are modified in accordance
with the instructions that E should be avoided.

Bayesian Override Model and Individual Differences.
As discussed above, visual inspection of subject learning
curves for EF trials in training suggested interesting in-
dividual differences. While some subjects gradually in-
creased their allocation of responses to E over F, others ap-
peared to show “insight” into the fact that the instructions
were incorrect, and switched from choosing F to choos-
ing E. A Bayesian framework could in principle provide
a prescriptive account for when one might become more
likely to abandon the instructions. We fit subject data with
a modified version of the basic Bayesian model, which
is closer in spirit to the neural override model. Here,
standard (Bayesian) probabilistic reinforcement learning
proceeds as usual “under the hood”, similar to the over-
ride model in which the striatum computes reinforcement
probabilities for the instructed stimulus without being dis-
torted by the instructions. Nevertheless, the choice rule is
such that the instructed stimulus is highly likely to be cho-
sen until the reinforcement system is sufficiently “confi-
dent” that the F stimulus is actually incorrect. This model
has a parameter for “confidence” and can therefore be
conservative: choices contrary to the instructions occur
if the mode of the F distribution isφ standard deviations
below 0.5, whereφ represents the required degree of con-
fidence. Estimated probability distributions were initial-
ized and updated as above. For choices involving the in-
structed stimulus, we altered the choice rule such that the
probability that the instruction-inconsistent stimulus (E)
is selected (i.e., the probability that the instructions are
determined to be inaccurate and should be abandoned), is
computed as:

PE(t) =
e

.5
ζ

e
.5
ζ + e

modeF (t)+φ(σF (t))

ζ

(15)

9For consistency with our basic Q-models which utilized separate
learning rates for gains and losses, we also implemented asymmetrical
decay parameters,γG andγL in another version of this model. The
results of this model, BIL LG, are reported in Table 1

whereφ (20 ≥ φ ≥ 0) represents the degree of confi-
dence, in terms of the number of standard deviations that
the mode of the F distribution has to be below 0.5, before
a choice inconsistent with the instructions is likely to oc-
cur. The probability of continuing to choose in accordance
with the instructions is then simplyPF (t) = 1 − P (E).
Note that this modification of the choice rule does not re-
sult in a persistent policy switch, but rather computes the
likelihood that the subject will choose in accordance with
the instructions based on an estimate of their accuracy at
each trial. For uninstructed stimulus pairs, the standard
“softmax” rule is retained. This model was motivated by
a similar implementation of reversal learning (but without
the confidence metric, as it did not involve prior instruc-
tions), by Hampton, Bossaerts, and O’Doherty (2006).

Once sufficient evidence as to the inaccuracy of the
instructions is accumulated, this model predicts a shift in
choice strategy, such that there is a higher probability of
making a choice inconsistent with instructions. Thus sub-
jects showing learning trajectories in which they initially
make instruction-consistent choices and then at some
point are more likely to abandon the instructions (possi-
bly reflecting “insight”) may be well fit by this model.

Q-Learning Results

We are primarily interested in model fits to the test
phase choices in which all novel pairings are presented
without feedback. Because the instructed stimulus is
paired with other stimuli of different probabilities, par-
ticipants relative choice of the instructed stimulus as fit
by softmax provides an objective measure of the effec-
tive value learned as a result of a combination of actual
reinforcement and instructions. Nevertheless, we report
model fits for both training and test phases.

Bias vs. OverrideOn the whole, our modified mod-
els produced a marginally better fit in the training phase,
and a substantially better fit in the test phase, compared to
standard Q-learning models.

These results permit several conclusions. First, com-
pared to the IL (bias) model, the QC (override) model
yielded a poorer fit of subjects’ choice data in both the
training and test phases. This lends greater preliminary
support to the IL model, which initializes Q-values ac-
cording to the instructions and then modulates updating
of those values over experience to be skewed based on in-
structions. This suggests that instructions initially operate
by endowing a stimulus with value, and then by changing
stimulus values to confirm rather than reject the instruc-
tions.

A more specific analysis of IL model variants suggests
that the good fit is produced by discounting of outcomes
inconsistent with the instructions more than by amplifica-
tion of consistent outcomes. In the IL-A model, we am-



Model Params AIC Trn AIC Tst Trn pR2 Tst pR2 LLE Trn LLE Tst
LG Con 3 75.88 94.87 0.16 0.288 -34.94 -44.44
LG 3 71.34 64.59 0.214 0.296 -32.67 -29.29
IL 4 72.07 58.56 0.23 0.392 -32.04 -25.28
IL-A 4 73.26 64.33 0.215 0.323 -32.63 -28.16
IL-D 4 71.95 58.82 0.231 0.389 -31.97 -25.41
QC 5 73.6 61.52 0.235 0.381 -31.8 -25.76
B Con 2 73.24 104.66 0.158 0.193 -34.62 -50.33
B 2 79.04 71.36 0.098 0.19 -37.52 -33.68
B OR 3 74.78 73.46 0.173 0.189 -34.39 -33.73
B SP 3 75.06 69.96 0.17 0.23 -34.53 -31.98
B IL 4 77.11 65.29 0.169 0.311 -34.56 -28.65
B IL LG 5 76.34 63.3 0.202 0.359 -33.17 -26.65

Table 1:Model fits for training (Trn) and test (Tst) as indicated by Akaike’s information criterion (AIC) (Akaike, 1974), PseudoR2

(Camerer & Ho, 1999), and log likelihood estimate (LLE). Higher PseudoR2 and LLE values are indicative of goodness of fit.
AIC values penalize fits for models with more parameters, andsmaller values indicate a better fit. LGCon: LG model for control
(uninstructed) subjects. LG: Gain/Loss model for instructed subjects. IL: instructed learning model in which initialvalues of
QE and QF reflect instructions and value updates for instructed stimulus selections are amplified or reduced consistent with the
instructions. IL-A: value updates consistent with instructions amplified only. IL-D: value updates inconsistent withinstructions
diminished only. QC: Q-values and C-values are added in softmax. B con: basic Bayesian model for uninstructed subjects. B:
basic Bayesian model. BSP: Bayesian strong prior model with free parameter initializing prior of instructed stimulus BOR:
Bayesian override model which predicts instruction-consistent choices until it is sufficiently certain that they are incorrect. BIL:
Bayesian instructed learning model with strong prior and anadditional free parameter scaling the degree to which outcomes from
the instructed stimulus are distorted (as in basic IL). BIL LG: Same as BIL with the addition of separate decay parameters for
gain and loss (as in LG).

plified the impact of gains that occurred after following
instructions for subjects told to choose F and amplified
losses following E choices for subjects told to avoid E. In
the IL-D model, we diminished the impact of losses fol-
lowing F choices for subjects told to choose F, and dimin-
ished the impact of gains that occurred after violating the
instructions for subjects told to avoid E. The IL-D model
provided a better fit to both the training and test phases.

Bayesian “Strong Prior” and IL models. The “strong
prior” model provided improved fits of subject data com-
pared to the basic Bayesian model. As expected, free
initial hyperparameters were best fit by high values. For
choose-F subjects meanα = 286.5 (sd = 441.5), for avoid-
E subjects meanβ = 522.9 (462.2). However, this model
proved to be inferior to the IL models (for both train and
test compared with the non-Bayesian IL model, and for
test compared with the Bayesian IL model). The Bayesian
IL model not only included a strong prior for instructed
stimuli, but also scaled the value updates to “confirm” the
bias of the instructions. While this model fit the training
phase data slightly less well than the “strong prior” model,
it provided a substantially better fit to the test phase. Be-
cause the latter phase probes the values actually integrated
as a function of training, this result supports the claim
that “special” (confirmation-bias) learning rules do indeed
drive the rule governance effect, a result consistent across
our Bayesian and non-Bayesian frameworks.

Bayesian Override and Individual Differences in “In-

sight” Learning. The Bayesian override model provided
inferior fits to subject data compared to the neurally-
motivated Q models. Nevertheless, this model substan-
tially improved training phase results compared to the ba-
sic Bayesian model (Table 1). The improved fit is a prod-
uct of both the capacity to choose according to the in-
structions during training, and also to shift from this ten-
dency. Interestingly, the best fit subjects were those with
learning curves most indicative of “insight” learning (see
appendix for representative curves). This override model
also fit training data marginally better than the Bayesian
bias models.

Though modification of the choice rule improved
model fit in training, it also reduced fit in the test phase
compared to the basic Bayesian model. This result reflects
the conceptual difficulty such an account has in explain-
ing the reemergence of instruction-following. If subjects
have come to the conclusion that the instructions are in-
accurate and adjust their behavior in opposition to those
instructions, they should continue to do so at test. But
because subjects tended to choose F even over stimuli
that had much higher probabilities of positive feedback,
these findings are better accommodated by the bias mod-
els, in which the system computing reinforcement proba-
bilities is inaccurately trained by that representing instruc-
tions, such that the resulting final instructed probabilityis
skewed.

Because of our small sample size and the lack of the-



oretical biological constraints, strong conclusions about
individual differences cannot be drawn. Though some
subjects shifted away from the instructed response in the
training phase more quickly than others, the cause of this
difference is unclear. Future work should seek to inves-
tigate these differences at the behavioral and biological
levels.

Discussion

The computational neural mechanisms of rule-
governance or instruction following, and how they
interact with reinforcement learning, remain under-
investigated. Our results show that such research may
permit not only description of the neural underpinnings of
rule-governance, but, by pitting different neural systems
against one another, may specify how learning systems
cooperate or compete for control of behavior.

Our network simulations explored two routes by
which instructions may exert their effects. The first pos-
sibility, as explored in the PFC-BG model, is that in-
structions bias the way the experience-based BG system
learns directly. In this case, instructions cause the BG
system to develop representations equivalent to those pro-
duced by environmental contingencies substantially di-
vergent from those actually present in the environment.
These divergent representations develop through “top-
down” PFC/HC training signals. This account predicts
that the striatum will represent a confirmatory bias to learn
what is dictated by higher order structures.

The second possibility, as explored in the PFC-MC
model, is that instructions override appropriate trial-and-
error learning in the striatum at the level of decision out-
put. In this case, the PFC/HC controls behavior even
though the striatum “knows better.” Some neurophysi-
ological data lend support to this idea. Pasupathy and
Miller (2005), who recorded from monkey BG and PFC,
demonstrated that that, although striatal cells indicate the
correct response early in training, the behavior did not.
The correct response appeared only when PFC cells also
indicated the correct response. Clearly, no instructions
appeared this study. Nevertheless, the results indicate that
behavior may not always be contingent on the representa-
tions of the BG reinforcement learning system, even when
it is correct.

Similarly, in a probabilistic reward-learning task, stri-
atal cells were shown to encode Q-values (both positive
and negative, consistent with Go and NoGo neuronal pop-
ulations Samejima, Ueda, Doya, & Kimura, 2005). The
degree of activation of the associated Q-value striatal neu-
rons predicted choice behavior. Critically, when the ani-
mal chose to “explore” by selecting the probabilistically
less valuable option, the vast majority of striatal Q-value

cells continued to represent the extant reward probabili-
ties rather than the choice actually executed in that trial
(see supplement of Samejima et al. (2005)) – suggest-
ing that extrastriatal structures control exploratory behav-
ior. Notably, in humans, an explicit decision to “explore”
in a probabilistic reinforcement learning environment is
associated with anterior prefrontal activation, despite the
fact that the striatum faithfully represented current reward
probabilities (Daw et al., 2006).

A computational account of BG and PFC by Daw et al.
(2005) suggests that each system produces different pre-
dictions about optimal behavior. In this framework, of the
two systems, that with the more certain prediction con-
trols behavior. The assumption that each system makes
independent predictions is more consistent with our PFC-
MC model in which the striatum makes its own predic-
tions and the ultimate choice is dictated by motor cortex,
depending on the relative strength of basal ganglia or pre-
frontal projections. The Daw et al. (2005) model is per-
haps most closely related to the Bayesian version of our
override model, in which the degree of certainty of the re-
inforcement system’s estimations is used as an index to
increase the odds of abandoning the instructions. In con-
trast, because the PFC-BG model suggests that the PFC
system directly influences BG representations, and trains
them to be skewed, such a clear separation at the neural
level would not be expected.

Neither our behavioral experiment nor our network
simulations clearly distinguish between the PFC-BG
(bias) and PFC-MC (override) accounts. Abstract mathe-
matical models fit to individual subject data suggest the
bias hypothesis (IL model) may be more applicable in
this context. Consistent findings were very recently re-
ported by Biele, Rieskamp, and Gonzalez (in press), who
explored the effects of social “advice” (from one partici-
pant to another) on subsequent performance in a gambling
task; the best-fitting model was conceptually similar to
our IL model. Thus although these authors take a social
and cognitive approach, the effect they explore is simi-
lar and likely shares similar neural substrates to those we
propose here.

Specific analysis of the mechanisms of our IL model
suggest that rules control behavior by dismissing out-
comes that are inconsistent with the rule (as indicated
by the superior fit of the IL-D model). This mechanism
maps on to the neural model where the impact of rein-
forcement inconsistent with instructions is reduced, given
the simultaneous top-down bias of the PFC/HC layer onto
the striatum. This bias drives Hebbian learning toward the
instructed response, and minimizes the effects of DA error
signals that would drive learning in the opposite direction.

Though the bias hypothesis is supported by the sim-
ulations we described, in absence of further data, we are



reluctant to reject the override hypothesis outright. While
both the QC model and Bayesian override models did pro-
duce overall inferior fits to subject choices, it remains pos-
sible that the essence of this type of model is correct, and
may accurately reflect a valid cognitive strategy used by
some participants. Future work will seek to accept or re-
ject this possibility by correlating model parameters with
biological signals, and examining the degree of model fit
to functional connectivity between sensory and premotor
cortical regions.

Model Predictions

Though the simulations presented here do not provide
conclusive answers, they do provide testable predictions.
Given the finite working memory capacity of the PFC, it
may be possible to take this system “offline” and probe
the striatum for responses. If the PFC is responsible for
overriding accurate striatal encoding of reward probabili-
ties, then taxing the PFC with a dual task may prevent this
override from taking place. In such a case, instructed sub-
jects would show rule-governed responding in a training
phase identical to that described above. By adding second
task during the test phase, however, the PFC should be un-
able to exert its influence and the contingencies learned by
the striatum should dictate instructed subjects’ choices.It
is, of course, possible that contributions from HC in ad-
dition to the PFC are necessary to override contingencies
learned by the striatum. In light of evidence that the HC
and BG systems often compete with each other for behav-
ioral control, such that inactivation of one system leads to
enhanced performance in tasks that depend on the other
(Atallah et al., 2004; Poldrack & Packard, 2003; Frank,
OReilly, & Curran, 2006), it should be possible to reduce
the impact of this system during the test phase. If, on
the other hand, the PFC/HC trains the BG, then both sys-
tems should reflect the rule-governed contingencies, and
the introduction of multiple tasks will not alter choices in
the test phase.

Further, a priming paradigm, in which a particular
stimulus is presented subliminally, followed by a target
response, might reveal striatal “weights” in the absence
of PFC/HC influence. If the target response is consis-
tent with the probabilistic reward value of the primed re-
sponse, we expect enhanced response latencies, whereas
if it is inconsistent we expect diminished response la-
tencies. Given that Parkinson’s disease affects this kind
of priming, revealing behaviorally silent striatal associa-
tions, such an approach appears feasible (Seiss & Praam-
stra, 2004).

Neuroimaging may also help to differentiate these
models. Several studies have shown parametric BG re-
sponses to stimuli in proportion to their reward value
(e.g., Delgado, Locke, Stenger, & Fiez, 2003; McClure,

Berns, & Montague, 2003; O’Doherty, Dayan, Friston,
Critchley, & Dolan, 2003). Parametric estimation of
BG response to each of the stimuli could indicate if the
PFC/HC is training this system or if it is learning indepen-
dently. The PFC-BG model predicts greater BOLD acti-
vation for the instructed stimulus F than its statistically
superior pair E. The PFC-MC model predicts that, due
to more choice and associated NoGo learning, the striatal
BOLD response will treat the instructed stimulus F as if
its reward value were quite low, even lower than in the
uninstructed case (see Figure 7 and results above).

Another possibility is that there are individual differ-
ences in the circuits mediating rule governance. Recent
imaging work documents individual differences in learn-
ing (Schönberg, Daw, Joel, & O’Doherty, 2007), but this
approach remains underused. Given that multiple pro-
jections from PFC and HC to striatum and to motor out-
puts exist, it is plausible that individuals differ in the neu-
ral and cognitive strategies used to follow task instruc-
tions. Hence, those subjects best fit by the C-learning
model might reveal greater functional connectivity be-
tween PFC and premotor cortex, whereas those better fit
by the IL model might show greater functional connectiv-
ity between PFC and striatum.

The behavioral data presented here demonstrate that,
as training progresses, some people begin to respond to
extant probabilistic contingencies rather than misleading
instructions. Given this, it is striking that a strong ten-
dency to act according to inaccurate rules reemerges in the
test phase (where subjects instructed to choose F, for ex-
ample, chose it not only over E, with which it was paired
during the training phase, but over A and C, stimuli that
subjects accurately learned had high probabilities of be-
ing correct). One mechanistic interpretation is that during
training, the PFC/HC inaccurately trains the BG, but that
some portion of the PFC (perhaps orbital prefrontal cor-
tex; Frank & Claus, 2006) with working memory capacity
remains sensitive to recent outcomes begins to dominate
training phase behavior.

Conclusion

Our work builds on lines of research from behav-
ior analysis, cognitive psychology and cognitive neuro-
science in attempt to identify and describe the neural cor-
relates of rule-governance. Though computational ap-
proaches to cognitive neuroscience continue to prolifer-
ate, few have attended to the mechanisms underlying rule-
governed behavior. Increasing evidence suggests mul-
tiple brain systems fulfill multiple cognitive roles (San-
fey, Rilling, Aronson, Nystrom, & Cohen, 2003; Mc-
Clure, Laibson, Loewenstein, & Cohen, 2004; see San-
fey, Loewenstein, McClure, & Cohen, 2006 for review).



Figure 8:The effect of different learning rates for the instructed
trial on each network model. For each model type we reported
the results for the learning rate that provided the best fit ofdata
from human subjects. Proportion correct is the amount of time
the model chose according to the actual contingencies (60%
for the critical stimulus), rather than the instructions. Higher
learning rates in instructed trials generally produce morerule-
following and less accurate responding.

How these systems cooperate and compete for control of
behavior remains largely unknown. Our computational
investigations into this question generate a number of
testable predictions. Future work will test these predic-
tions, and inform future modeling efforts.

Appendix

Network Model Learning Rates

Instructions were simulated in the network models by
presenting a single trial in which the instructed (inaccu-
rate) response was clamped to the output layer. The learn-
ing rate along projections from the PFC/HC layer was el-
evated for this trial, then reduced to the learning rate used
throughout the network (.001). Figure 8 shows results
produced using different learning rates for the instructed
trial.

Q-learning

Best fitting parameters in all models were derived us-
ing the MATLAB fmincon function, implementing the
Simplex method (Nelder & Mead, 1965) using multiple
starting locations by maximizing the log likelihood of the
data under the model on a trial-to-trial basis for each sub-
ject separately.

LLEs for each subject were computed as

LLE = log(
∏

t

Pi∗,t) (16)

wheret is trial number andi∗, t denotes the subjects
choice on trialt. For each subject, the best fit parame-
ters are those associated with the maximum LLE value
and are, by definition, the most predictive of the subject’s
sequence of responses in the probabilistic task.

The pseudoR2 measure compares the improvement
in LLE gained by the model compared to a model that
choose randomly (p=0.5 for each trial).

PseudoR2 =
LLE − r

r
(17)

wherer is the LLE for the random model.

We also computed the AIC index, which penalizes
models with more free parameters:

AIC = −2(LLE) + 2k (18)

Wherek is the number of free parameters. Lower AIC
values indicate a better fit. Because of the criteria applied
to the training phase, some subjects experienced more
training blocks than others. As a result, LLEs for subjects
who took longer to reach training criteria are inappropri-
ately high. To control for this we divided the training LLE
for each subject by the number of training blocks needed
to reach criteria.

To test the validity of our model assumptions specific
to the instructed stimulus, we ran control models by se-
rially applying each modified Q-algorithm to each of the
uninstructed stimuli, retaining the standard Q-algorithm
for the instructed stimulus. These control models indi-
cated that improved fits of the modified Q-models were
not produced by arbitrarily adding parameters, but rather,
reflected computation induced by the experimental ma-
nipulation.
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Figure 9:Bayesian override model testing the possibility that subjects would abruptly abandon the rule upon accumulating suf-
ficient evidence. Though the model fit the test data poorly compared to other models, the training data produced a good fit. The
diversity of fits in the training phase indicate individual differences. Data here smoothed over 5 point moving average.a) Subjects
fit poorly by this model appeared to gradually shift from choosing according to instructions to choosing according to contingencies
(this subject: pseudo-R2 = 0.03).b) Subjects best fit by this model also showed a learning curves most indicative of “insight.” (this
subject: pseudo-R2 = 0.21)
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Figure 10: Plots of representative posterior estimated distributions for E and F stimuli. The basic Bayesian model computes
optimally inferred probability distributions based on individual subject data. This model revealed that 4 subjects did not receive
sufficient evidence to discriminate between the E and F stimuli. a) Typical subject discriminated the relationship of the EF stimulus
pair, E being more reliably correct than F.b) One of four subjects who were unable to infer the correct relationship of E and F based
on the probabilistic feedback received.
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